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Liquid crystals of polyelectrolyte networks
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Physics and Astronomy Department, University of California, Los Angeles, California 90024

~Received 23 May 2000; published 21 May 2001!

The Onsager theory of nematic liquid crystals is extended to rigid polyelectrolytes cross-linked by polyva-
lent ions. Recent synchrotron x-ray diffraction experiments showed that dilute, birefringent networks are
formed under these conditions. The application of Onsager theory to this system leads to the prediction of the
existence of a range of exotic mesophases such as the ‘‘cubatic,’’ the ‘‘tetratic,’’ and the ‘‘trigatic.’’ The exotic
network phases appear on the border of regions of phase coexistence of network phase with isotropic material
~at low polyvalent ion concentration! and with dense bundles~at high polyvalent ion concentration!.

DOI: 10.1103/PhysRevE.63.061705 PACS number~s!: 87.15.2v, 61.30.Cz, 64.70.Md
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I. INTRODUCTION

Rodlike organic molecules can align spontaneously
develop nematic liquid-crystalline order. In his classical p
per of 1949@1#, Onsager showed that the critical volum
fraction of cylindrical rods required for the onset of nema
order in a solution of long rods is very low, and is of th
order of the aspect ratioD/L of the rods~with D the rod
diameter andL the rod length!. Onsager theory applies onl
to molecules in good solvent. Early studies of the effects
reduced solvent quality on solutions of stiff synthetic po
mers reported that some form of aggregation took place@2#,
and it was suggested that these aggregates might be d
bundles of rods@3#.

The phase behavior of biopolymers has recently recei
considerable attention, in particular that of the long, st
biopolymer actin, a major ingredient of muscles and of
cytoskeleton of cells@4#. As a function of rod concentration
solutions of stabilized actin filaments exhibit an isotropic-
nematic transition@5#. The onset concentration of about
mg/ml ~for long molecules! agrees well with Onsager theor
provided one uses forL the persistence length@6# ~of order
10 mm for actin!. When so-called ‘‘linker proteins’’ are
added to actin solutions, dense bundles can be obse
~known as ‘‘stress fibers’’! as well as gel-like networks@7#.
As a function of linker concentration, actin solutions show
sol-gel transition@8# where the viscosity diverges. At highe
linker concentrations, microphase separation takes pl
characterized by strong light scattering and eventu
bundles appear. A schematic phase diagram is shown in
1. The elastic properties of linked actin networks have b
examined extensively@9#, although the theoretical interpre
tation remains somewhat controversial@10#. Both the actin
bundles and the actin networks are encountered in the c
plasm of cells and the fact that the elastic properties of a
networks can be significantly modified by modest change
linker concentration may play an important role in c
motility @11#.

Charged biopolymers, like actin or DNA, also can
linked together bypolyvalent ions. Because polyvalent ion
are easier to describe than linker proteins, they form a s
able model system to study the physics of linking biopo
mers. Bundling is observed@12# when millimolar concentra-
tions of polyvalent ions are added to biopolymer solutio
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Numerical simulations of charged rods in the presence
polyvalent ions report that the polyvalent ions gener
short-range attractive forces@13#, which presumably are re
sponsible for the bundle formation. Numerical simulations
bundle formation @14# obtain modest bundle diamete
~10–50 rods! probably due to kinetic effects@15#.

The present paper was motivated by a recent a low-an
synchrotron x-ray study@16# that was performed on actin
solutions in the presence of low concentrations of Ca21 and
Sr21. A gel-like network phase was observed at low io
concentrations. For example, for 10mm actin rods in the
presence of Ca21 ions, a network phase appeared arou
10 mM which extended over a range of 5 mM , while dense
bundles came in at about 25 mM . The surprising result was
that this network phase wasbirefringent with an unusual
structure factorS(qz ,q'). Perpendicular to the optical axis
S(qz50,q') exhibited a sequence of well-defined peak
From the peak position of the first maximumq'

* , the mean
spacingj between the rods could be deduced to be of or
200 Å. This length is large compared to the actin diame
so the network must be dilute. The presence of higher-or
harmonics indicated that there was a considerable amoun
local positional order in the direction transverse to the opti
axis. The most logical assumption would be that the struct
factor is that of a polymer nematic@17#. However, along the
optical axis,S(qz ,q'50) exhibited a maximumqz* with a
magnitude about half of that ofq'

* . This is puzzling since

FIG. 1. Schematic phase diagram of the sol-gel transition o
mixture of rods and strong linkers.
©2001 The American Physical Society05-1
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R. BRUINSMA PHYSICAL REVIEW E 63 061705
for polymer nematics, the functionS(qz ,q'50) should~for
small qz) be zero for fundamental reasons@17#. It follows
that the birefringent network phase of actin cannot be a p
mer nematic. Since actin is a chiral biopolymer, one exp
nation might be that theqz* peak is associated with the pitc
of a chiral polymer liquid crystal@18#. However, in a num-
ber of cases the longitudinal peak position was found to
definitely off the optical axis. This is fundamentally inco
sistent with any form of chiral order. The interpretation
the longitudinal peak offered by the experimentalists w
thata certain fraction of the rods are oriented perpendicul
to the optical axis~for the case of the off-axis peaks, th
angle would be somewhat less than 90°!. The peak atqz*
would be due to~short-range! positional order among the
transverse rods.

It is important to pay close attention to the electrostat
of the system. It was proposed many years ago@19# that the
phase diagram of polyelectrolyte solutions with no cro
linkers might contain a curious, positionally ordered, pha
with cubic symmetryat very low polymer concentration
~and no added salt! because electrostatic repulsion betwe
rods should favorp/2 crossing angles. The cubic phas
which has long-range positional order, was never obser
The electrostatic torque between adjacent rods would
greatly enhanced by linkers since the linkers force the rod
be in close proximity. A pair of charged rods connected b
mobile, flexible link~such as a polyvalent ion! would tend to
form a crosslike structure. Monte Carlo simulations@20# of
collections of cross-shaped molecules report formation of
cubaticliquid-crystal phase. This phase, which had been p
posed by Nelson and Toner on theoretical grounds@21#, re-
sembles the cubic structure but, although it has cubic or
tational order, it lacks positional order. The cubatic has b
encountered only in numerical simulations so far. It wou
appear suggestive that the unusual birefringent actin
works may be related to the cubic or the cubatic phase
neither of these two phases is birefringent.

The first aim of the present study is to use Onsager the
to reexamine the nature of the liquid-crystal phases
charged rods in the presence of linkers. Since Onsager th
is able to account for the formation of nematic order in ac
in the absence of linkers, it is the natural starting point for
analysis of the birefringent properties of linked actin n
works. Depending on the optimal crossing angle betw
rods, we indeed find a whole variety of exotic liquid crysta
The symmetry groups of these phases are related to certa
the point-group symmetries of the Bravais lattice, ev
though they lack positional order. For the specific case of
crossing angles, Onsager theory predicts that, apart from
conventional nematic, we should encounter two other m
sophases: the cubatic phase as well as a ‘‘tetratic’’ ph
@22#, a cubatic with a tetragonal distortion along one of t
cubic axes with the point-group symmetry of a tetrago
crystal. The appearance of the tetratic is due to competi
between excluded volume effects and electrostatic torq
For crossing angles different from 90°, a variety of comp
phases with different point-group symmetries may be re
ized.

When the ion concentration was increased in the exp
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ments of Ref.@16#, the scattering intensity decreased a
S(qz50,q') exhibited additional peaks at larger wave ve
tors that could be indexed by the structure factor of a dens
packed hexagonal bundle. The bundle phase and the net
phase coexisted over a large range of concentrations.
offers a second puzzle: once a sufficient amount of poly
lent ions is available to start forming dense, charge-neu
bundles, why would the dilute network phase persist
higher ion concentrations? The second aim of the paper
use a generalization of Onsager theory to understand
dense-dilute phase-coexistence phenomena appear to ac
pany the exotic phases and to determine what sets the c
acteristic length scale of the networks. Onsager theory
deed predicts that the novel phases should appear righ
the border of phase-decomposition areas in the phase
gram. We find two different forms of dense-dilute phase c
existence:~i! between a linker-rich network phase and
linker-poor isotropic solution and~ii ! between a linker-poor
network phase and a linker-rich dense bundle phase.Entropy
plays a central role in both cases. In the first case, entro
effects make the network compact and force the characte
tic mesh sizej of the network to be of the order of the Deby
screening length. In the second case, entropy gain by
counter-ion release mechanism stabilizes the network ph
and allows for an extensive region of dense bundle–dil
network phase coexistence.

II. MODEL

A. General

Assume a nonbirefringent, aqueous, semidilute solution
very long cylindrical rods of lengthL, diameterD ~with L
@D), and concentrationf. The cylinders are assumed t
carry a negative line charge per unit lengthl along their
central axis exceeding the Manning thresholdl52e/ l B ,
( l B is the Bjerrum length!. Under these conditions, a cloud o
‘‘condensed’’ counterions envelops the rods@23#, reducing
the effective charge per unit length froml down to2e/ l B .
The solution also contains a low concentration of mono
lent ions characterized by a Debye parameterk and a very
low concentrationc of small, positive polyvalent ions o
valenceZ. The Manning cloud of ions surrounding the rod
enriched in polyvalent ions since every polyvalent ion th
enters the cloud allows the release ofZ monovalent ions into
bulk, with a corresponding lowering of the entropic free e
ergy by, roughly, (Z21)kBT. As a result, nearly all of the
polyvalent ions will be condensed on the rods under stand
conditions. This means that for a homogeneous solution
ions and rods, the mean number of polyvalent ions per
would be c/f. We will assume homogeneity for now an
postpone a discussion of decomposition phenomena to
last section. We also will assume the following.

~i! The size of the polyvalent ions is sufficiently sma
enough so they can be ‘‘shared’’ only between two rods a
time.

~ii ! The ion-to-rod concentration ratio is considerably b
low the isoelectric point~the point where the charge of th
polyvalent ions compensates the charge of the rods!.
5-2
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LIQUID CRYSTALS OF POLYELECTROLYTE NETWORKS PHYSICAL REVIEW E63 061705
~iii ! The Debye screening length is large compared w
the rod diameterD but small compared with the rod lengthL
~so kD!1 but kL@1).

~iv! The rod length is less than the persistence length
the polymers can be treated as rigid rods.

B. Electrostatic torque

The electrostatic potential energy per unit lengthU(g,R)
of two cylindrical, charged rods passing each other with
~acute! angleg at a minimum separation ofR was computed
within Debye-Hückel ~DH! theory@24# by Brenner and Par
segian~BP!,

U~g,R!/kBT5G
e2kR

usin~g!u
. ~2.1!

Here G is a dimensionless parameter that characterizes
strength of the electrostatic repulsion as compared tokBT. It
follows from Eq. ~2.1! that the electrostatic repulsion be
tween two nearby rods produces a nonzero mutual tor
]U(g,R)/]g if the angleg is not equal to 90°.

Equation~2.1! holds only in the absence of Manning co
densation because re-arrangement of condensed counte
near a crossing site is likely to produce angle-dependent
rections to Eq.~2.1!. In the presence of counter-ion conde
sation, the functionU(g,R) should be qualitatively similar
to Eq. ~2.1!, and in particular it should have a minimum
g5p/2. Whenever an explicit form forU(g,R) is required,
we will include the effects of the counterions in the usu
way by replacing in the DH formula the bare charge per u
length with the Manning-renormalized charge per unit len
e/ l B . This gives a value forG of the order of 1/k l B so G
increases with decreasing salt concentration.

C. Salt bridges

A crossing site between two rods with a minimum spa
ing R of orderD is anelectrostatic trapfor condensed poly-
valent ions~see Fig. 2!. The entropic free-energy cost o
localizing one polyvalent ion at a crossing site salt isZ times
smaller than the entropic free-energy cost of localizing
equivalent number of monovalent salt ions, so we will igno
accumulation of monovalent ions at crossing sites.

1. Single-ion salt bridge

For a crossing site with just a single localized polyvale
ion, the electrostatic energy is minimized when the poly
lent ~point! ion is localized right at the geometrical center
the crossing point@see Fig. 2~a!#. Denote the two rods by 1
and 2. The electrostatic free energy gain of placing a po
valent ion at a crossing site~that initially carried no polyva-
lent ion! will be denoted byDHel(g), with g the crossing
angle. DHel(g) is of orderZkBT, keeping in mind that the
effective charge per unit length of the rods equalse/ l B . For
explicit calculations, we will assume thatDHel is a constant.
The entropic free energy of localizing a polyvalent ion~con-
fined to a rod! to one particular site is of the order t
kBT ln(cl0 /fL) sincec/fL is the number of polyvalent ion
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per unit length (l 0 is a molecular length!. The formation free
energyDF1(g) of a single-ion bridge is the sum of these tw
terms minus the energy cost of bringing the two rods
gether, as given by Eq.~2.1!,

DF1~g!5DHel1kBT lnS c l 0

fL D2kBT
G

usingu
. ~2.2a!

2. Double-ion salt bridge

The electrostatic energy of a two-ion bridge is minimiz
when the two ions are arranged symmetrically on oppo
sides of the crossing point along the direction of the t
acute angles of the cross@see Fig. 2~b!#. The formation free
energy is, approximately, twiceDHel1kBT ln(cl0 /fL) mi-
nus the sum of the energy cost of bringing the two ro
together and of bringing the two ions together. This lat
term is angle-dependent and proportional to sin~g/2! as fol-
lows from Fig. 2b. For explicit calculations, the formatio
free energyDF2(g) of a two-ion salt bridge withg acute
will be taken to be

DF2~g!52DHel12kBT lnS c l 0

fL D2D sinS g

2D2kBT
1

usingu
~2.2b!

with D a dimensionless parameter of order one. The form
tion free energy for obtuseg is found from the condition

FIG. 2. Ion links between two charged rods.~a! Single-ion salt
bridge. The optimal angle is 90°.~b! Two-ion salt bridge. The
optimal angle is less than 90°.
5-3
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R. BRUINSMA PHYSICAL REVIEW E 63 061705
DF2(p2g)5DF2(g). The one important feature of Eq
~2.2b! is that, unlikeDF1(g), the minimum ofDF2(g) is no
longer at 90° because of theD sin ~g/2! term.

III. GENERALIZED ONSAGER THEORY

A. Variational free energy

Let f c(V) be the normalized orientational distributio
function, with f c(V)5 f c(2V). Onsager’s free energ
functional for f c(V) has the following general form:

bF@ f c~V!#/f> ln fnT1E dV f c~V!ln@4p f c~V!#

1E E dV1dV2f c~V1! f c~V2!V~g12!.

~3.1!

The first term is the translational entropic free energy wh
vT is the thermal volume andf is the rod concentration. Th
second term is the orientational entropic free energy and
third term is the correlation energy computed within seco
order virial theory. The kernelV(g) in Eq. ~3.1! takes the
form

V~g!5fL2usingu H D2debDF~g!1k21

3F lnS G

usingu D1C1E1S G

usingu D G J . ~3.2!

The first two terms in Eq.~3.2! are, respectively, the standa
Onsager excluded volume term, and the short-range inte
tion due to sliding linker molecules. The length scaled
(!D) is the effective range of the salt-bridge interactio
The formation free energyDF(g) of the ion link should be
equated to eitherDF1(g) or DF2(g), depending on whethe
one or two ions is involved. It is assumed that the salt-brid
can freely slide over the rods. The last term, derived
Stroobantset al. @6#, is the contribution from the BP long
range electrostatic repulsion@see Eq.~2.1!#, C is the Euler
constant andE1(x) is the exponential integral. We will de
fine the control parameterebDF0 to be the angle-independen
part of the Boltzmann factor of the~single-ion! salt-bridge
energy,

ebDF0[
c l 0

fL
ebDHel. ~3.3!

SinceebDF0 is proportional to the ion-to-rod concentratio
ratio ~c/f!, we will considerebDF0 as an experimentally ac
cessible control parameter.

The structure of the functionV(g) as a function ofebDF0

will play an important role in the following. Figure 3 show
the typical form ofV(g) for a single-ion salt bridge@using
Eq. ~2.2a! for DF(g)]. For low values ofebDF0, V(g) has a
primary minimum atg50. ForkD small andG of order one,
a secondary minimum appears atg5p/2. The secondary
minimum is more pronounced for largerG but it never be-
06170
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FIG. 3. Typical form of the functionV(g) given by Eq.~3.2! for
the case of a single-ion salt bridge. The function is shown for t
values ofebDF0 near the point where the minimum shifts fromg
50 to g5p/2.
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LIQUID CRYSTALS OF POLYELECTROLYTE NETWORKS PHYSICAL REVIEW E63 061705
comes the primary minimum ifebDF050 ~i.e., if there are no
salt bridges!. For nonzeroebDF0, the secondary minimum
deepens, and turns into the primary minimum ofV(g) at a
critical value ofebDF0 of orderD/d.

To obtain a better insight into the implications of this sh
in the position of the absolute minimum ofV(g), assume
that the correlation energy is the dominant term of Eq.~3.1!.
The problem is then to determine what orientational dis
bution minimizes the correlation energy under the condit
that f c(V) is normalized over the unit sphere. If the absolu
minimum of V(g) is at g50, then the correlation energy i
minimized by a functionf c(V) that is highly peaked along
particular direction. This corresponds to the nematic pha
The alignment is due to the excluded volume effect. Ne
suppose thatV(g) is of the form shown in Fig. 3 with the
absolute minimum atg5p/2. The correlation energy then i
minimized by a functionf c(V) that has equal-sized peak
along three orthogonal directions, i.e., by a functionf c(V)
with cubic symmetry, which corresponds to the Nelso
Toner cubatic phase. This argument would lead us to ex
a first-order phase transition from a nematic phase to a
batic phase as a function of the control parameterebDF0. The
scenario is not very sensitive to the detailed shape ofV(g):
it only requires that a second minimum inV(g) develops at
g5p/2 as a function of the control parameterebDF0.

For the case of atwo-ionsalt bridge, the second minimum
of V(g) appears at some angleg* less thanp/2 @see Eq.
~2.2b!#. Obtaining the orientational distributionf c(V) mini-
mizing the correlation free energy is a less trivial mathem
cal problem in this case. If the second minimum ofV(g) at
g* has just turned into the absolute minimum ofV(g), then
minimizing the correlation energy leads to af c(V) that con-
sists of a number of preferred directions on the unit sph
such that the angle subtended between pairs of direction
equal tog* or to p2g* . There are a number of differen
ways how this can be arranged.

1. Planar structures

The simplest case is when the rod orientations are
stricted to aplane @see Fig. 4~a!#. For arbitraryg* , an obvi-
ous choice forf c(V) would consist of two preferred direc
tions that make a mutual angleg* . This corresponds to a
two-dimensional nematic liquid crystal. The optical axis
the bisector of the two peak directions. If planar structu
also would be favorable in three dimensions, then format
of a smectic-C phase may be possible. A special case
obtained wheng* is equal to 60° since then there are not tw
but threeplanar directions with all subtended angles equa
60° ~along the edges of an equilateral triangle!. This corre-
sponds to a~non-birefringent! hexatic liquid crystal@see Fig.
4~b!#.

2. Three-dimensional structures

The simplest distribution that obeys the required con
tion in three dimensions is anf c(V) that consists of three
peaks along three directionsV i on the unit sphere making
mutual angles equalg* . This phase is in general birefringen
with the optical axis along the vector sum of the three dir
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tions. It is, however, not a nematic liquid crystal since t
phase lacks uniaxial rotational invariance around the opt
axis. In the most general case, the point-group symmetr
this phase is that of the Bravais lattice of the trigonal crys
so we might call it a ‘‘trigatic’’ phase. The trigatic phase ca
be shown to have a lower correlation free energy than
planar nematic phase. Adding peaks~e.g., by forming a tri-
angular lattice of peaks on the unit sphere! increases the
correlation free energy and is in general not favorable. Ho
ever, as for the two-dimensional case, for certain special
ues ofg* , the correlation energy can be further reduced
adding more peaks. For instance, for cosg*51

2 the optimal
distribution has six peaks directed along the edges of a
rahedron while for cosg*51

3, the orientational distribution
has four peaks directed along the four-body diagonals of
cube. Neither of these two interesting phases are, howe
birefringent.

The preceding discussion applies only if the minimum
g* has just turned negative. If the minimum deepens the
variety of other complex structures may become possible,
instance those associated with the directions along the e
of a regular polyhedral network covering a sphere~i.e., the
platonic solids! or triangular lattices on the unit sphere. F

FIG. 4. Mesophases are formed by aligning rods along prefe
directions that make a relative angle equal to the optimal angleg* .
In two dimensions, there are in general two preferred directions
in three dimensions there are in general three preferred direct
@~a! and~c!#. For certain special angles, there can be more prefe
directions such asg* 560° in two dimensions~b!.
5-5
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R. BRUINSMA PHYSICAL REVIEW E 63 061705
simplicity, we will consider below only the case that th
second minimum ofV(g) is at g* 5p/2, i.e., the cubatic
case shown in Fig. 4~c!.

B. Phase diagram

To construct the full phase diagram, we must minim
the complete free-energy equation~3.1! keeping account no
only of the correlation free energy but also of the entro
term.

1. Isotropic phase

The isotropic distribution function isf c(V)51/4p. The
associated variational free energy is

bF iso~f!5f lnfnT1 1
2 f2L2D0g0 , ~3.4!

with

g05
p

2
2~d/D0!ebDF0E

0

p

dg sin2 ge2G/usin~g!u, ~3.5a!

D05D1k21S 2

p D E
0

p

dg sin2 g

3F lnS G

usingu D1C1E1S G

usingu D G . ~3.5b!

This quantityg0 is a dimensionless parameter that does
depend on the rod concentration or on the rod lengthL and
that can be considered as a second-order virial coeffic
while D0 is a renormalized rod diameter.

For increasing values ofebDF0, g0 turns negative at som
critical value. The required linker concentration in order f
g0 to be zero is proportional tof and independent ofL.
Negative values ofg0 in Eq. ~3.4! are associated with nega
tive second-order virial coefficients and hence withphase
separation. A necessary, although not sufficient, condition
phase stability of an isotropic solution is that the seco
derivative of the free energy with respect to the concen
tion f is positive. If that condition is violated, spontaneo
phase separation is expected to take place. It follows fr
Eq. ~3.4! that spontaneous phase separation happens fo
concentrationsf in excess of

f I>
1

L2D0~2g0!
. ~3.6!

2. Nematic phase

The Onsager trial distribution function for a nematic is
the form

f O~u,a!5const3cosh~a cosu!. ~3.7!

The parameter 1/a is proportional to the second mome
^u2& of the angular distribution, and acts as a variatio
parameter. For conventional Onsager theory, this trial fu
tion leads to an isotropic-to-nematic transition forfL2D of
order 4.0. At the critical point,a is large compared to one.
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Inserting Eq.~3.7! into Eq.~3.1!, and minimizing the free
energy with respect toa, we find that the variational free
energy of the nematic is in fact not significantly affected
the presence of linkers. ForfL2D large compared to one, i
is

bFO~f!5f ln~fnT!1d1f ln~d2fL2D2! ~3.8!

with d1 – 2 positive and dimensionless and withD2 a renor-
malized rod diameterD @defined similar to Eq.~3.5b!#. The
contribution coming from the linkers is largely suppress
by the factore2G/sin(g) sinceg is small for largea. Because
the second-virial term of the free energy of theisotropic
phase is lowered by the introduction of the links—by
amount proportional to the control parameterebDF0—it fol-
lows that the isotropic-to-nematic transition point is shift
to higher values offL2D when ebDF0 increases. If we in-
creaseebDF0 to the point whereg050, then, for largefL2D,
the nematic phase has a higher free energy than the isotr
phase, as can be seen by comparing Eqs.~3.4! and~3.8!. The
critical value of fL2D for the isotropic/nematic transition
point in fact diverges atg050,

~fL2D ! IN}S 22 lng0

g0
D . ~3.9!

3. Cubatic phase

For the cubatic phase we will use as our trial distributi
function not one but three normalized ‘‘Onsager-type’’ a
gular distributions along the three preferred orthogonal dir
tions n̂i ~the x, y, andz directions of a Cartesian coordina
system!,

f 5
1

3 H (
i 51

3

f O~u i ,a!J . ~3.10!

The 1
3 prefactor is required to maintain normalization. Th

angleu i is measured from the unit vectorn̂i , while a is to be
treated again as a variational parameter. Inserting Eq.~3.10!
into Eq.~3.1! and minimizing the free energy with respect
a gives the following result:

bFC~f!>3bFO~f/3!1f2L2Dg0* , ~3.11!

where

g0* 5 1
3 $11@1/~Dk!#@ ln G1C1E1~G!#2~d/D !ebDF02G%.

~3.12!

The first term on the right-hand side of Eq.~3.11! is the
Onsager free energy of a collection of three nematic pha
each having a concentrationf/3, along the three preferre
directions. The second term is the interaction energy betw
rods having different preferred directions. This second te
is of the form of a second-virial term, as in Eq.~3.4! so we
can identify the lineg0* 50 as a line in the phase-diagra
bordering where the phase-decomposition of the cub
5-6
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phase. Comparing Eqs.~3.5! and ~3.12! we find that, as a
function of increasingebDF0, the lineg0* 50 is encountered
before we reachg050.

For ebDF050, the variational free energy of the nema
phase is lower than that of the cubatic phase. For increa
ebDF0, the cubatic free energy drops with respect to the ne
atic free energy becauseg0* decreases withebDF0 @see Eq.
~3.12!# while the nematic energy is not affected byebDF0 ~to
lowest order!. As long asg0* remains positive, the cubati
free energy exceeds the nematic free energy in the limi
large values offL2D @see Eqs.~3.8! and ~3.11!#. At the
point g0* 50, the variational free energy of the cubat
FC(f) equals 3FO(f/3), according to Eq.~3.11!. Because
the Onsager variational free energy is aconvexfunction of
the concentrationf for larger values offL2D @see Eq.~3.8!#
it follows that 3FO(f/3) is less thanFO(f). This means
that along the lineg0* 50, the cubatic must have a lower fre
energy than the nematic for large values offL2D. The criti-
cal value offL2D for the cubatic-to-nematic transition d
verges when we approach theg0* 50 line ~as 1/g0* ). For
negative values ofg0* , we encounter a spinodal line fo
spontaneous phase separation of the same form as Eq.~3.6!.
A schematic phase diagram is shown in Fig. 5.

C. Order-parameter theory

To obtain a better insight into the competition betwe
nematic and cubatic order near this multicritical point, w
will expand f c(V) in a series of spherical harmonic@25# and
treat the expansion coefficients as order parameters for
various transitions. We thus start with

f c~V!5
1

4p
1(

l 51

`

(
m52 l

l

Al ,mYl
m~u,w!. ~3.13!

Since the angular distribution function must be real, we
mand thatAl ,m5(Al ,2m)* while for achiral rods with cylin-
-

r
nd
y

e
n
b

06170
ng
-

f

he

-

drical symmetry we may restrictl andm to even values@26#.
Expanding the free energy in terms of theAl ,m coefficients,
using the completeness property of Legendre polynom
and the addition theorem for spherical harmonics, gives
second order in theAl ,m coefficients,

bF>bFO~f!12pfH(
l ,m

~11fL2Dlgl !uAl ,mu21O~A3!J .

~3.14!

In Eq. ~3.14!, thegl are dimensionless parameters similar
the second-virial parameters encountered in Sec. III B, w
the D1 parameters are renormalized rod radii. Mo
precisely,

FIG. 5. Mean-field phase diagram~schematic!. The vertical axis
is the control parameterebDF0. The horizontal axis is the dimen
sionless rod concentration. The dashed lines indicate where
second-virial coefficients of the isotropic phase, respectively,
cubatic phase changes sign (g050, respectively,g0* 50). The
hatched region is the boundary for phase separation.
gl5E
0

p

du Pl~cosu!sin2 u„12~d/D1!ebDF~u!
…, ~3.15a!

Dl5D1k21H *0
pdu Pl~cosu!sin2 uF lnS G

sinu D1C1E1S G

sinu D G
*0

pdu Pl~cosu!sin2 u
J . ~3.15b!
tri-
ic

by
The higher-order terms in Eq.~3.14! all are due to the non
linear dependence of the first~entropic! term of Eq.~3.1! on
f c(V). It follows that the coefficients of the higher-orde
terms in Eq.~3.14! are numerical factors that do not depe
on physical quantities. The dependence of the free energ
the material parametersL, D, and f thus proceeds entirely
through thegl parameters. The isotropic phase is unstabl
11fL2Dlgl is negative for anyl because in that case we ca
reduce the free energy below that of the isotropic phase
on

if

y

allowing spontaneous development of a mode of the dis
bution function with the symmetry of a spherical harmon
with indices~l, m!. The lines in the phase diagram defined

f l5
1

L2Dl~2gl !
~3.16!

thus determine a set of spinodal lines. For instance, Eq.~3.6!
is a special case of Eq.~3.16! for l 50 ~spontaneous growth
of concentration fluctuations!. Similarly, thel 52 case is the
5-7
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instability line for spontaneous development of nematic
der with A20}*dV f f(V)Y2

0(V), the usual nematic orde
parameter. Thel 54 case will be seen to correspond to t
development of cubatic order. To obtain the actual ph
diagram near the multicritical point, we must include t
nonlinear terms of Eq.~3.14!. We will do this in a number of
steps.

1. Nematic order

If we only allow terms ofl 52 symmetry, then the free
energy assumes the following form:

bF2

2pf
>S r 2@ uA2,0u212uA2,2u2#2

4
21

~A5p!

3@~A2,0!
326A2,0uA2,2u#21

30p

21

3$~A2,0!
414uA2,2u414uA2,2u2~A2,0!

2% D ,

~3.17!

where we included terms up to fourth order in the expans
coefficients. The parameterr 2511fL2D2g2 measures the
distance from thel 52 spontaneous instability line as give
by Eq.~3.16!. When we decreaser 2 , two nontrivival degen-
erate minima appear. At a first-order nematic-to-isotro
phase transition point~nearr 250.031), these two nontrivia
minima turn into the absolute minima. The first minimu
has a nonzero value ofA2,0 ~about 0.086 at the transitio
point! while A2,250. We may make the standard identific
tion of A2,0 as the nematic order parameter. For the sec
minimum, bothA2,0 andA2,2 are nonzero but this is actuall
not a separate case since the two orientational distribut
turn out to be related by a 90° rotation.

2. Cubatic order

If we only allow terms ofl 54 symmetry, then the free
energy assumes a more complex form,

bF4

2pf
5r 4$~A4,0!

212uA4,2u212uA4,4u2%29Ap

3H 36

1001
~A4,0!

32
12

191
A4,0uA4,2u21

24

143
A4,0uA4,4u2

1
12

143
A45

14
@A4,4~A4,2!* 1c.c.#J 127p

3H 1058

17 017
A4,0

4 112
362

21 879
A4,0

2 uA4,4u2

16
3734

153 153
A4,0

2 uA4,2u216
5900

153 153
uA4,2u4

16
980

21 879
uA4,4u4112

410

21 879
uA4,4u2uA4,2u2

112
80

17 017
A14

45
@A4,0A4,24~A4,2* !21c.c.#J .

~3.18!
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Here, r 4511fL2D4g4 measures the distance from thel
54 instability line given by Eq.~3.16!. Numerical minimi-
zation with respect to the expansion parameters shows
the A4,2 coefficients are zero within the numerical precisi
of the minimization.

A ‘‘polar coordinate’’ representation simplifies this fre
energy considerably. We define

A cosw5A4,0,
~3.19!

A sinw5&A4,4.

In terms of the polarA-w variables, we can write the fre
energy as

bF4~A,w!

2pf
5r 4A21F~w!A31G~w!A4. ~3.20!

In Eq. ~3.20!

F~w!529ApH 36

1001
~cosw!31

12

143
cosw~sinw!2J

~3.21!

and

G~w!527pH 1058

17 017
~cosw!416

362

21 879
~cosw!2~cosw!2

1S 3

2D 980

21 879
~sinw!4J ~3.22!

are two dimensionless functions of the polar anglew. F(w)
and G(w) both have a single minimum at the ‘‘magical

anglew* 5arctanA 5
7 . The physical meaning of this angle

obtained by plotting the corresponding angular distribut
function,

f c~V!5
1

4p
1A$~cosw!Y4

0~u,w!1~sinw!

3@Y4
4~u,w2w0!1Y4

24~u,w2w0!/&#%

~3.23!

~with w0 an arbitrary phase factor!. This distribution function
is shown in Fig. 6~first panel! and it corresponds to the
Nelson-Toner cubatic phase.

To minimize the free energy we first setw5w* in Eq.
~3.20!. The remaining dependence of@bF4(A,w* )/2pf# on
the amplitudeA is a standard Landau order-parameter exp
sion of the free energy near a first-order phase transition.
conclude that Eq.~3.20! describes a first-order phase tran
tion from an isotropic to a cubatic phase withA as the order
parameter.

3. Cubatic-nematic coupling and the tetratic phase

We now allow all terms up to quartic order ofboth l52
and l 54 symmetry, but we exclude theA4,2 andA2,2 coeffi-
cients that we found to be zero when minimizing the pur
5-8
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l 52 and l 54 parts of the free energy. The followin
cubatic-nematic coupling term is then encountered to fi
order in the nematic order parameterA2,0:

bF214

2pf
5

bF2

2pf
1

bF4

2pf
1A2,0A5H 2Ap

40

77
14p

360

1001
A4,0J

3S ~A4,0!
22

14

5
uA4,4u2D1~higher-order terms!.

~3.24!

It follows from Eq.~3.24! that nonzero values of the nemat
order parameter arenot automatically produced wheneve
A4,0 appears. The termA2,0@(A4,0)

22 14
5 uA4,4u2# vanishes

when A4,4/A4,05A 5
14 , i.e., precisely at the magical ang

that defines the cubatic phase so cubatic order does no
pose nematic order.

Higher order coupling terms inA2,0 that play a role, but
that are not exhibited in Eq.~3.24!, are of the form

FIG. 6. Orientational distribution functions of the cubatic pha
~top panel! and the tetratic phase~bottom panel!.
06170
t

m-

A4,0(A2,0)
2. These terms guarantee that nonzero values

A4,0 are associated with nonzero values ofA2,0. This is, how-
ever, a well-known effect: the actual nematic orientation
distribution function is not really aY2

0 spherical harmonic~a
complete series of the spherical harmonicsY1

0(u) for all even
l is required@27#!.

The cubatic-nematic coupling term has important con
quences. Consider the limiting caser 2@0. Far from the nem-
atic instability line,A2,0 must in general be small, so we nee
only to retain linear or quadratic terms inA2,0 in Eqs.~3.17!
and ~3.24!. We can write the dependence of the free ene
on A2,0 in that limit as

bFcop~A2,0!

2pf
>A5H 2Ap

40

77
14p

360

1001
A4,0J

3S A4,0
2 2

14

5
uA4,4u2DA2,01r 2uA2,0u2.

~3.25!

We can minimize Eq.~3.25! with respect toA2,0 to obtain a
new contribution to the cubatic variational free energy tha
quartic in the cubatic order parameter,

bFcop~A,w!

2pf
52

G

r 2
S ~cosw!22

7

5
~sinw!2D 2

A4,

~3.26!

with G a positive numerical constant. This nematic-cuba
coupling term can be absorbed into the cubatic free ene
by a redefinition of the functionG(w) @see Eq.~3.22!#,

G* ~w!5G~w!2
G

r 2
S ~cosw!22

7

5
~sinw!2D 2

. ~3.27!

The second term ofG* (w) in Eq. ~3.27! has amaximum

at the magical anglew* 5arctanA 5
7 . For large values ofr 2 ,

w* 5arctanA 5
7 remains the overall minimum ofG* (w), but

as we reducer 2 the minimum turns into a maximum a criti
cal value ofr 2 of the order one, as is evident from Eq.~3.27!.
The free energy acquires a new minimum withf different
from f* . As we continue to reducer 2 the minimum shifts
continuously away fromf* . To interpret the nature of this
transition, first note that whenf does not equalf* , then the
nematic order parameterA2,0 must be finite. That does no
mean, however, that the new phase is just a nematic, o
that it is birefringent. This is because the new optimal an
f* is in general not equal to zero orp, which means that the
expansion co-efficientA4,4 remains nonzero@see Eq.~3.19!#.
This, in turn, impliesthat the new phase does not ha
uniaxial symmetry. A plot of the orientational distribution
function is shown in the second panel of Fig. 6: the n
phase is a cubatic with a tetragonal distortion along one
the axes. We will call this birefringent phase—with com
bined nonzero nematic and cubatic order parameters
‘‘ tetratic’’ phase since it represents a tetragonal distortion
the cubatic phase. Unlike the cubatic phase, the tetratic p
is birefringent. Figure 7 shows the structure of the pha
5-9
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diagram as obtained by numerical minimization of E
~3.24!. Note that there is never a direct transition from t
cubatic to the nematic and that the four phases appea
come together at a multicritical point. A significant part
the cubatic phase is transformed to a tetratic phase.

It is useful to briefly discuss the nature of the cubatic-
tetratic transition in a different manner. The proper ord
parameter describing the appearance of nematic bire
gence in an isotropic fluid is not reallyA2,0 but ratherQi j ,
the anisotropic, traceless part of the dielectric tensor. I
nematic, this tensor has the form

Qi j 5S~ninj21/3d i j ! ~3.28!

with S the amplitude of the nematic order parameter and w
ni a unit vector along the direction of the optical axis. B
cause of rotational symmetry, the Landau free energy of
nematic-to-isotropic transition cannot depend on the dire
orientation and has the formF(S)5(1/2)rS22wS31uS4 to
fourth order inS, with r, w, and u expansion coefficients
~there can be no linear termsSsinceQi j is traceless!. Reduc-
ing the coefficientr, we encounter the expected first-ord
phase isotropic-nematic phase transition.

For the onset of birefringence in acubatic environment,
we must allow for terms that are dependent on the dire
orientation. Cubic symmetry permits the following secon
order terms:

F25 1
2 lxxxx~Qxx

2 1Qyy
2 1Qzz

2 !1lxxyy~QxxQyy1QxxQzz

1QyyQzz!12lxyxy~Qxy
2 1Qxz

2 1Qyz
2 !. ~3.29!

The threel parameters are coefficients of a tensor of ra
four with cubic symmetry. In terms of the amplitudeS and
the director, this expression simplifies to

F25 1
2 rS21 1

2 ~lxxxx2lxxyy22lxyxy!S
2~nx

41ny
41nz

4!
~3.30!

FIG. 7. Mean-field phase diagram near the multicritical point
computed by the numerical minimization of Eq.~3.24!.
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with r a linear combination of thel parameters. The secon
term of Eq.~3.30! must be zero if there is no cubatic ord
so, to lowest order, it must be proportional to the cuba
order parameterA

~lxxxx2lxxyy22lxyxy!5aA. ~3.31!

From the previous discussion, we know that the prefer
tial direction of the optical axis should be along one of t
cubatic directions. This conditions demands that the coe
cient a in Eq. ~3.31! is negative. The free energy is the
minimized if the optical axis of the tetratic phase lies alo
one of the cubatic axes. Choosing the optical axis along
of the three cubatic axes, we recover the same form forF(S)
but with the expansion parameterr replaced byr 1aA. The
onset of birefringence in a cubatic thus should remain a fi
order transition but the larger the cubatic order parameteA,
the earlier birefringence starts when we reducer, consistent
with Fig. 7.

IV. PHASE COEXISTENCE

The exotic liquid-crystal phases appear along the bor
of a region of phase decomposition. The fact that netw
formation by cross-linked polymers can be accompanied
phase separation is well established@28# for the case that
angle-dependent forces play no role. Two physical consid
ations play here an important role. First, when a certain c
centration of~strong! linkers is added to a solution of poly
mers, then extended networks appear for increasing lin
concentration when we cross thepercolation threshold~see
Fig. 1!. For rigid rods, the linker concentration at the perc
lation threshold is proportional to the rod concentrationf,
with a proportionality constant close to two. We can view t
control parameterebDF0 of Sec. III as the probability for the
formation of a link on a rod, so the percolation criterion f
network formation is similar to the condition thatebDF0

must exceed a critical value for the formation of a dilu
aggregate.

Next, assume that the initial linker-free rod concentrati
is high enough so the starting solution is at leastsemidilute.
This means that there are a certain number of ‘‘preexistin
contacts between the rods. Letj~f! be the correlation length
of the semidilute solution@j~f! is proportional to (1/f)1/2 as
discussed below#. The concentration of these contacts is th
proportional to 1/„j(f)…3. If the linker concentration isless
than the concentration of native contacts, then all linkers
be accommodated by the semidilute solution with no cha
in local structure. When the linker concentration exceeds
concentration of preexisting contacts then this forces a
crease of the correlation length to a value below the one
the semidilute solution. This results in a significant reduct
of the entropy of the semidilute solution. This free ener
increase can be avoided by absorbing the excess linkers
dense clusterscontaining only a limited number of rods an
many linkers, a form of phase separation known as ‘‘m
crogelation.’’ Note that these dense clusters are compa
by entropy: releasing rods from the clusters into the solut
increases the entropy of the system.

s
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We now will examine the nature of the phase-separa
in more detail for the present case where the rods are cha
and where polyvalent ions act as cross-linkers.

A. Isotropic-cubatic phase coexistence„cÕfËkL …

First consider a state where a linker-rich network coex
with a linker-poor isotropic rod solution restricting ourselv
for simplicity to the case that the network phase is a cub
aggregate and that~nearly! all the linker ions,M in number,
are absorbed by the cubic network. Let the characteri
mesh size of the aggregate bej, the aggregate rod volum
fraction F, and the aggregate volumeVa ~assumed smal
compared to the total sample volumeV). The rod concentra-
tion fa of the aggregate is then equal toF/V with V, of
order LD2, the rod volume. The aggregate volume fracti
F is related to the mesh sizej, the linker numberM, and to
Va by simple geometrical relations,

Va}Mj3, ~4.1a!

F}S D

j D 2

. ~4.1b!

To treat the phase separation, we must generalize the
sager variational free energy of Sec. III. A mechanism
required that restrains the uncontrolled growth of the
concentration when we cross the boundary of the de
and/or dilute phase coexistence region. This physical me
nism is, for low salt concentrations, electrostatic repuls
between the rods. The variational free energy for a sam
exhibiting isotropic and/or cubatic phase coexistence in
presence of electrostatic repulsion is

DF/VkBT'fs ln~fsnT!1~Va /V!H fa ln~fanT!

1c1fa ln~c2faL2D !1c3

L

l B
faK0~kj!J .

~4.2!

The first term is the entropic free energy of the isotro
solution. The rod concentration of the isotropic solution isfs
~we neglect the second-order virial terms for the isotro
solutions!. Conservation of the number of rods requires th

Vfs1Vafa5Vf. ~4.3!

The second term of Eq.~4.2! is the free energy of the aggre
gate. The first two terms inside the brackets are the tran
tional and rotational entropic free energies of the cuba
phase obtained above@see Eqs.~3.8! and ~3.11!; c1 and c2
are constants#. The third term inside the curly brackets d
scribes the electrostatic repulsion—computed within D
theory—between the rods of a cubatic structure of mesh
j. K0 is the modified Bessel function andc3 is a positive
constant. Since the mesh size depends on the rod conce
tion fa through Eq.~4.1!, Eq. ~4.2! is indeed nonlinear. In
the limit that the aggregate contains only a small fraction
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all the rods, i.e., thatVafa!Vf, we can expand Eq.~4.2! in
powers of the ratioVafa /Vf with the following result:

DFV/kBT'VfV ln~fnT!1M
D3

F1/2 S ln~F/Vf!

1c1 ln~c2FL/D !1c3

L

l B
K0~kD/F1/2! D .

~4.4!

We will minimize the free energy with respect toF for fixed
M under the constraints of Eqs.~4.1! and~4.3!. The first two
terms inside the large parentheses favor largeF. This is just
the entropic-compaction mechanism: by increasingF we can
release rods and hence reduce the overall free energy o
mixture. The last term in large parentheses is negligible
long as the mesh sizej is large compared to the Deby
length 1/k. On the other hand, because the rod lengthL is
large compared to the Bjerrum lengthl B this term makes the
free-energy cost of any network withj much less than the
Debye length prohibitively large. We thus expect that co
paction continues until the mesh size becomes comparab
the Debye screening length~at least forkD!1). Explicit
minimization of Eq.~4.4! gives

F* 'S kD

ln~L/ l B! D
2

. ~4.5!

Comparing with Eq.~4.1b! it is easy to show that this resu
is consistent with our intuition thatkj is of order one.

As we increase the linker concentrationc, the aggregate
volume grows further by incorporating more and more ro
and eventually we exhaust the uniform solution. This ha
pens whenVafa /Vf is of order one. Using this criterion
together with Eqs.~4.1! and~4.5!, we find that the maximum
linker to the rod concentrationc/f for which coexistence
between an isotropic phase and a cubatic phase remains
sible is of orderkL. This is just the condition for the mea
spacing between the links of a network containingall the
rods to be equal to the Debye screening length.

B. Dense bundle–cubatic phase coexistence„cÕfÌkL …

We saw that whenc/f is large compared tokL, phase
coexistence between a cubatic network and an isotropic
lution no longer is possible. A new form of phase decomp
sition is required with one of the two phases accommoda
a higher density of linkers than the cubatic phase is capa
of. Such a phase exists: the dense bundle discussed in
Introduction. In its simplest form, a dense bundle is cha
neutral: polyvalent ions cancel the charges of the rods,
lowing the rods to be in close proximity. The essential po
is thus that dense bundles can absorb far more polyva
ions than the network phase. These polyvalent ions are e
condensed into a Wigner crystal, or they may remain mob
forming a highly correlated liquid. Numerical simulations
pairs @29# or bundles@14# of polyelectrolyte rods indicate
that, at room temperature, divalent ions are still fai
mobile.
5-11
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The preceding argument would suggest that the m
natural form of phase coexistence would be to useall the
polyvalent ions to construct a charge-neutral dense bun
with the remaining rods free to form a linker-free isotropic
nematic phase. As long as we are far from the isoelec
point, the bundle needs to absorb only a small fraction of
total number rods to cancel the linker charge. This may
be true, however. Suppose we remove a polyvalent ion f
the bundle and use it to create a link between two rods
solution. The local electrostatic energy of the ion should
be much affected by the transfer—the ion is sandwiches
tween two rods in either case—but this is not true for
entropyof the system. Transfer of a polyvalent ion of v
lenceZ out of the bundle should permit release ofZ counte-
rions out of the Manning clouds of the two rods. Studies
counterion release under different circumstances@30# show
that this process should lower the entropic free energy of
system by, approximately,kBT per released ion. This coun
terion release mechanism is opposed by the free-energy
incurred by the electrical charging of the bundle due to
removal of the polyvalent ion@31#. This argument would
lead to the conclusion that densebundles may be spontane
ously charged. The excess ions are used as cross-linker
solution and may form a network.

To estimate the free-energy cost of transferring ions fr
a bundle to the rods in solution, we will perform the trans
process in steps. First, we removeM polyvalent ions of va-
lenceZ from a very long, charge-neutral cylindrical bund
of radiusRb . To compute thecapacitive charging free en
ergy DFcap of the bundle, we first note that the remainin
mobile polyvalent ions of the bundle must redistribute the
selves until a state of equilibrium is reached in which there
no net electrical field in the interior of the dense bundle
follows from Gauss’s law that in this equilibrium state th
interior must be charge neutral, so the total chargeZM of the
dense bundle must be distributed uniformly over thesurface
of the cylinder.

The average surface charge area density of the d
bundle is thuss52MZ/Ab , with Ab , the surface area o
the bundle. The Poisson-Boltzmann~PB! free energy per unit
area of aflat charged surface with a fixed surface char
densitys is given by@32#

g~s!5usukBT lnS l Bs2

2c0
D ~4.6!

in the limit of no added salt (c0 is a normalization constan
that will later drop out!. Using Eq.~4.6!, the charging free-
energy cost of the bundle is estimated as

DFcap~M !5MZkBT lnS l B~MZ/Ab!2

2c0
D1MDHbundle,

~4.7!

with DHbundle the contribution to the capacitive charging e
ergy cost by thelocal electrostatic correlation energy of th
bundle. ~Neglecting the curvature of the bundle should
permitted providedRb is large compared with the characte
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istic width of the charge cloud surrounding the dense bun
which is the Chapman length (l Bs)215AB / l BMZ.)

The next step is to placeM polyvalent ions on the surfac
of free rods in solution. This leads to an effective part
discharge of the rods and the release ofMZ monovalent ions.
The free-energy gain obtained by counterion release
within PB theory@33#

D f rel>kBT lnS jM

2pc0bD2D ~4.8!

per released ion~for the case of no added salt!. In Eq. ~4.8!,
D is the rod diameter, 1/b is the line density of charges alon
the rod, andjM is the Manning parameter@i.e., jM5 l B /b;
Eq. ~4.8! is the limit case ofjM!1]. The normalization
constantc0 is the same as in Eq.~4.7!. The discharge energy
of the rods is then

DF rod52M ~D f ret1DH rod! ~4.9!

with DH rod the contribution to the electrostatic free-ener
gain due to interaction of the polyvalent ion with loc
charges of the rod~which is also beyond PB theory!.

Finally, we constructM single-ion salt bridges betwee
free rods. The free energy per gain per bridge is taken to
DF1(g5p/2). The total free energy change of the char
transfer process is then

DF~M !/kBT'MDH2MZ lnS jM

2pc0bD2D
1MZ lnS l B~MZ/Ab!2

2c0
D , ~4.10!

with

DH5DHbundle2DH rod2DF1~g5p/2!. ~4.11!

The quantityDH represents the local free-energy cost
transforming a polyvalent ion inside a dense bundle into
ion link in a rod network. If we accept the fact that the loc
electrostatic environment of a polyvalent ion inside a bun
is similar to that of an ion link between two rods in solutio
thenDH should be modest~i.e., of orderkBT). Minimizing
DF(M ) with respect toM gives the following equilibrium
number of cross-links:

M* '
AB

ZDb
e2bDH/2Z. ~4.12!

The surprise is that the number of released polyvalent ion
determined by thesurface areaof the dense bundle.

We now can use Eq.~4.12! to determine under which
conditions the dense bundle releases a sufficient numbe
polyvalent ions to transform the remaining free rods into
network phase~of the type discussed in Sec. II!. The number
of polyvalent ions in a fully charged neutral cylindrica
bundle of lengthLb is of orderLbRb

2/(ZD2b), sinceZD2b is
the volume per polyvalent ion. The fractiond of all polyva-
5-12
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lent ions that is transferred back into solution out of t
dense bundle is then the ratio ofM* andLbRb

2/(ZD2b),

d'
D

Rb
e2bDH/2Z, ~4.13!

with Ab of orderLbRb . The concentration of released linke
in solution isdc sincec was the original concentration o
linkers. By assumption, the dense bundle contains onl
small fraction of all rods, so the linker-to-rod concentrati
ratio of the free rods in solution is of orderdc/f. Recall that
the crude~percolation! criterion for network formation by
strong linkers is that the linker-to-rod concentration ra
must be larger than a number of order one. We saw ea
thatc/f had to be of orderkL at the onset of bundle forma
tion. It follows thatdkL must be larger than one in order fo
network formation to be possible at the onset of bundle f
mation. Using Eq.~4.13!, this condition translates to

DkL

Rb
e2bDH/2Z>O~1!. ~4.14!

Physically, this effect may be viewed as the electroche
cal competition for monovalent ions between the ‘‘thin
charged rods of diameterD—the polyelectrolytes in
solution—and ‘‘thick’’ charged rods—the cylindrical dens
bundle of diameterRb . By allowing the bundle to charge u
through the removal of polyvalent ions, we can trans
monovalent ions from the surface of the thin rods to
surface of the thick rod, which lowers their density a
hence increases their entropy.

V. CONCLUSION

The central result of this paper is that elementary stat
cal mechanics arguments indicate that under generic co
tions exotic mesophases will form if we mix charged rig
rods with small polyvalent counterions. It is important
realize the limitations of the methods when discussing
predictions. The most serious limitation is the ‘‘Onsage
restriction of the free-energy variational expression Eq.~3.1!
to second-order virial terms. For instance, when mixtures
hard rods and hard spheres are examined experimen
complex forms of microphase transitions are observed@34#
that do not readily follow from Onsager theory. In such m
tures,smecticlike structures are encountered, and smecticl
structures actually might be present in the actin experime
that were described in the Introduction@35#.

The next concern is that even within a second-order vi
expansion, we do not have a very accurate form for imp
tant quantities such asDF1.2(g) and V(g). This would re-
quire numerical simulations of the counterion distributi
near a cross-link taking into account the actual molecu
environment of the biopolymers in question. Since the t
biopolymers are in close vicinity near a link, the molecu
structure of the polymers is expected to be important in
terminingV(g). We argued in Sec. III that the symmetry
the exotic mesophasesat onsetshould not depend sensitivel
on the precise structure ofV(g), only on the angleg* where
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V(g) turns negative. However, as the minimum deepens
details ofV(g) certainly will start to play a larger role. In
particular, two ion-linked biopolymers are not likely to a
sume the 90° orientation of the single-ion link of our simp
model. In a recent DH calculation of the functionU(g,R)
for two crossing DNA strands, Kornyshev and Leikin@36#
obtained a complex structure forU(g,R) with smalloptimal
crossing anglesg* of order (PD)1/2/L ~P is the helical pitch
of DNA!. It is in fact possible to studyg* experimentally by
attaching two double-stranded DNA molecules together a
single point by crosswise exchange of single strands~‘‘Hol-
liday junction’’!. Confusingly, in the absence of polyvale
salt ions, a Holliday junction appears to have a large cross
angle near 90°, while in the presence of finite concentrati
of Mg21 ions, the angle reduces from 90° to about 60°@37#,
which actually would be in accord with the results of Se
III. In any case, it is clear that an accurate determination
V(g) would be very useful to make further progress.

Next, we neglected thermal fluctuations. For the ph
behavior of very long, stiff rods such as actin, this is pro
ably not an important limitation but for biopolymers wit
shorter persistence lengths, such as DNA, thermal fluc
tions are likely to become increasingly important. If the pe
sistence length drops below the Debye screening lengt
and hence the mesh size—then we should expect
thermal fluctuations could significantly alter the intern
structure of the network phase. The effect of thermal fluct
tions on the tetratic phase could be rather interesting. Str
thermal fluctuations might, for instance, lead to phase fl
tuations that transform the tetratic phase into a nematic ph
with an unusual structure factor. Finally, we did not inclu
chirality. DNA is, for instance, well known to exhibit a cho
lesteric phase@38#, with the rod direction perpendicular t
the chiral axis. If we would increase the chiral nature of t
interaction, then exoticchiral mesophases may become po
sible, for instance the analog of the tetratic phase with
phase factorw0 in Eq. ~3.31! now z dependent@e.g.,w0(z)
52p(z/P)]. These phases would compete with the chol
teric phase rather than with the nematic phase. The de
bundle phase also may acquire a chiral character@18#.

This paper was motivated by the experiments of Ref.@16#.
To what extent can we now interpret these results? For
crossing angles, we encountered only one birefringent
work phase: the tetratic phase. The structure factor of a
ratic network phase of semiflexible polyelectrolytes can
shown to have separate maxima both along the direct
parallel and perpendicular to the optical axis at different p
sitions, consistent with the measured structure factor. It t
seems indeed possible that the network phase of Ref.@16#
either is a tetratic liquid crystal or a tetragonal crystal but
precise peak positions ofS(q) appear to be different from
that expected of a tetratic phase@39#. Under conditions of
phase coexistence of network and isotropic material,
characteristic mesh size of the network is predicted to be
Debye screening length which is not inconsistent with
experiments of Ref.@16#. Finally, can the network be in elec
trochemical equilibrium with dense bundles? The numeri
simulations@14# on semiflexible polyelectrolytes report tha
the ratio ofD/Rb is of order 1022. If we use this estimate in
5-13
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Eq. ~4.14! and assume thatDH is of order ZkT or less, then
electrochemical equilibrium is possible between a netw
and a bundle phase whenkL is of order 102 or larger.
This condition appears to be satisfied by the experimen
Ref. @16#.

An interesting issue we did not discuss concerns theelas-
tic propertiesof the mesophases. As mentioned, the rheolo
of actin solutions has been the subject of intense interest.
elastic properties of the birefringent network phases migh
unusual. For instance, both traction and shear stress
cause the birefringent axis of the tetratic phase to rot
given sufficient time. It would also be interesting to see h
the relative balance between the network phase and the
tropic solution and between the network phase and
.
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bundle phase is effected by external elastic stress. Osm
pressure should favor the bundle phase over the netw
phase and hence alter the phase coexistence.
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