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Liquid crystals of polyelectrolyte networks
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The Onsager theory of nematic liquid crystals is extended to rigid polyelectrolytes cross-linked by polyva-
lent ions. Recent synchrotron x-ray diffraction experiments showed that dilute, birefringent networks are
formed under these conditions. The application of Onsager theory to this system leads to the prediction of the
existence of a range of exotic mesophases such as the “cubatic,” the “tetratic,” and the “trigatic.” The exotic
network phases appear on the border of regions of phase coexistence of network phase with isotropic material
(at low polyvalent ion concentratiprand with dense bundldgt high polyvalent ion concentratipn
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I. INTRODUCTION Numerical simulations of charged rods in the presence of
polyvalent ions report that the polyvalent ions generate

Rodlike organic molecules can align spontaneously anghort-range attractive forcg43], which presumably are re-
develop nematic liquid-crystalline order. In his classical paSDOﬂSib|e for the bundle formation. Numerical simulations of
per of 1949[1], Onsager showed that the critical volume bundle formation[14] obtain modest bundle diameters
fraction of cylindrical rods required for the onset of nematic (10—50 rod$ probably due to kinetic effecfd5].
order in a solution of long rods is very low, and is of the ~ The present paper was motivated by a recent a low-angle
order of the aspect rati®/L of the rods(with D the rod ~ synchrotron x-ray study16] that was performed on actin
diameter and. the rod length Onsager theory applies only solutions in the presence of low concentrations of ‘Cand
to molecules in good solvent. Early studies of the effects oS ™. A gel-like network phase was observed at low ion
reduced solvent quality on solutions of stiff synthetic poly- concentrations. For example, for Jam actin rods in the
mers reported that some form of aggregation took p[age  Presence of Cd ions, a network phase appeared around
and it was suggested that these aggregates might be den@mM which extended over a range of SMm while dense
bundles of rod$3]. bundles came in at about 23uin The surprising result was

The phase behavior of biopolymers has recently receivethat this network phase wasirefringent with an unusual
considerable attention, in particular that of the long, stiff,structure factoiS(q,,q, ). Perpendicular to the optical axis,
biopolymer actin, a major ingredient of muscles and of theS(q,=0,g,) exhibited a sequence of well-defined peaks.
cytoskeleton of cell§4]. As a function of rod concentration, From the peak position of the first maximugi , the mean
solutions of stabilized actin filaments exhibit an isotropic-to-spacingé between the rods could be deduced to be of order
nematic transitior{5]. The onset concentration of about 2 200 A. This length is large compared to the actin diameter,
mg/ml (for long moleculesagrees well with Onsager theory so the network must be dilute. The presence of higher-order
provided one uses fdr the persistence lengfl] (of order  harmonics indicated that there was a considerable amount of
10 um for actin. When so-called “linker proteins” are local positional order in the direction transverse to the optical
added to actin solutions, dense bundles can be observexis. The most logical assumption would be that the structure
(known as “stress fibers)’as well as gel-like network§7]. factor is that of a polymer nematj@ 7]. However, along the
As a function of linker concentration, actin solutions show aoptical axis,S(q,,q, =0) exhibited a maximung; with a
sol-gel transitior{8] where the viscosity diverges. At higher magnitude about half of that aff . This is puzzling since
linker concentrations, microphase separation takes place,
characterized by strong light scattering and eventually
bundles appear. A schematic phase diagram is shown in Fig.
1. The elastic properties of linked actin networks have been
examined extensivel{9], although the theoretical interpre- e Moo
tation remains somewhat controversjab]. Both the actin
bundles and the actin networks are encountered in the cyto-
plasm of cells and the fact that the elastic properties of actin
networks can be significantly modified by modest changes in
linker concentration may play an important role in cell
motility [11].

Charged biopolymers, like actin or DNA, also can be
linked together bypolyvalent ions Because polyvalent ions
are easier to describe than linker proteins, they form a suit-
able model system to study the physics of linking biopoly-
mers. Bundling is observed 2] when millimolar concentra- FIG. 1. Schematic phase diagram of the sol-gel transition of a
tions of polyvalent ions are added to biopolymer solutionsmixture of rods and strong linkers.
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for polymer nematics, the functia®(q,,q, =0) should(for  ments of Ref.[16], the scattering intensity decreased and
small g,) be zero for fundamental reasord7]. It follows  S(q,=0,q,) exhibited additional peaks at larger wave vec-
that the birefringent network phase of actin cannot be a polytors that could be indexed by the structure factor of a densely
mer nematic. Since actin is a chiral biopolymer, one explapacked hexagonal bundle. The bundle phase and the network
nation might be that thg} peak is associated with the pitch phase coexisted over a large range of concentrations. This
of a chiral polymer liquid crysta[18]. However, in a num- offers a second puzzle: once a sufficient amount of polyva-
ber of cases the longitudinal peak position was found to béent ions is available to start forming dense, charge-neutral
definitely off the optical axis. This is fundamentally incon- bundles, why would the dilute network phase persist to
sistent with any form of chiral order. The interpretation of higher ion concentrations? The second aim of the paper is to
the longitudinal peak offered by the experimentalists wagd!se a generalization of Onsager theory to understand why
thata certain fraction of the rods are oriented perpendicular dense-dilute phase-coexistence phenomena appear to accom-
to the optical axis(for the case of the off-axis peaks, the pany the exotic phases and to determine what sets the char-
angle would be somewhat less than P0FPhe peak aig? acteristic Igngth scale of the networks. Onsager theory in-
would be due to(short-rangg positional order among the deed predicts that the novel phases should appear right on
transverse rods. the border of phase-decomposition areas in the phase dia-
It is important to pay close attention to the electrostaticsdram. We find two different forms of dense-dilute phase co-
of the system. It was proposed many years Eif) that the existence:(i) between a linker-rich network phase and a
phase diagram of polyelectrolyte solutions with no crosdinker-poor isotropic solution andi) between a linker-poor
linkers might contain a curious, positionally ordered, phasd€twork phase and a linker-rich dense bundle phastopy
W|th Cubic Symmetrwt Very IOW po'ymer Concentrations p|ayS a Centl’a| r0|e in bOth cases. In the fiI’St case, entropic
(and no added salbecause electrostatic repulsion betweeneffects make the network compact and force the characteris-
rods should favorm/2 crossing angles. The cubic phase,tic mesh size of the network to be of the order of the Debye
which has long-range positional order, was never observe@creening length. In the second case, entropy gain by the
The electrostatic torque between adjacent rods would bgounter-ion release mechanism stabilizes the network phase
greatly enhanced by linkers since the linkers force the rods tgnd allows for an extensive region of dense bundle—dilute
be in close proximity. A pair of charged rods connected by a'etwork phase coexistence.
mobile, flexible link(such as a polyvalent igrwould tend to
form a crosslike structure. Monte Carlo simulatid2€] of
collections of cross-shaped molecules report formation of the Il. MODEL
cubaticliquid-crystal phase. This phase, which had been pro-
posed by Nelson and Toner on theoretical grourds, re-
sembles the cubic structure but, although it has cubic orien- Assume a nonbirefringent, aqueous, semidilute solution of
tational order, it lacks positional order. The cubatic has beewery long cylindrical rods of length, diameterD (with L
encountered only in numerical simulations so far. It would>D), and concentratiorp. The cylinders are assumed to
appear suggestive that the unusual birefringent actin nesarry a negative line charge per unit lengthalong their
works may be related to the cubic or the cubatic phase butentral axis exceeding the Manning threshale- —e/lg,
neither of these two phases is birefringent. (Ig is the Bjerrum length Under these conditions, a cloud of
The first aim of the present study is to use Onsager theor{condensed” counterions envelops the rods3], reducing
to reexamine the nature of the liquid-crystal phases othe effective charge per unit length fromdown to —e/lg.
charged rods in the presence of linkers. Since Onsager theoffhe solution also contains a low concentration of monova-
is able to account for the formation of nematic order in actinlent ions characterized by a Debye parameteand a very
in the absence of linkers, it is the natural starting point for adow concentrationys of small, positive polyvalent ions of
analysis of the birefringent properties of linked actin net-valenceZ. The Manning cloud of ions surrounding the rod is
works. Depending on the optimal crossing angle betweernriched in polyvalent ions since every polyvalent ion that
rods, we indeed find a whole variety of exotic liquid crystals.enters the cloud allows the releasezainonovalent ions into
The symmetry groups of these phases are related to certain biilk, with a corresponding lowering of the entropic free en-
the point-group symmetries of the Bravais lattice, everergy by, roughly, Z—1)kgT. As a result, nearly all of the
though they lack positional order. For the specific case of 90polyvalent ions will be condensed on the rods under standard
crossing angles, Onsager theory predicts that, apart from theonditions. This means that for a homogeneous solution of
conventional nematic, we should encounter two other meions and rods, the mean number of polyvalent ions per rod
sophases: the cubatic phase as well as a “tetratic” phasould be ¢/¢. We will assume homogeneity for now and
[22], a cubatic with a tetragonal distortion along one of thepostpone a discussion of decomposition phenomena to the
cubic axes with the point-group symmetry of a tetragonalast section. We also will assume the following.
crystal. The appearance of the tetratic is due to competition (i) The size of the polyvalent ions is sufficiently small
between excluded volume effects and electrostatic torqueenough so they can be “shared” only between two rods at a
For crossing angles different from 90°, a variety of complextime.
phases with different point-group symmetries may be real- (ii) The ion-to-rod concentration ratio is considerably be-
ized. low the isoelectric poinfthe point where the charge of the
When the ion concentration was increased in the experipolyvalent ions compensates the charge of the)rods

A. General
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(iii) The Debye screening length is large compared with =
the rod diameteb but small compared with the rod length Single-lon
(so kD<1 butkL>1).

(iv) The rod length is less than the persistence length so
the polymers can be treated as rigid rods.

B. Electrostatic torque \
O & 0]

The electrostatic potential energy per unit lengtfy, R)
of two cylindrical, charged rods passing each other with an
(acute angley at a minimum separation & was computed

within Debye-Hickel (DH) theory[24] by Brenner and Par- D
segian(BP), &
- kR ,
U(y,R)/kgT=T —. 2.1
(7 ) B |S|n( ,y)l ( ) (a) -
HereI is a dimensionless parameter that characterizes the Double-ion

strength of the electrostatic repulsion as comparddsia It
follows from Eq. (2.1) that the electrostatic repulsion be-
tween two nearby rods produces a nonzero mutual torque
dU(y,R)/dy if the angley is not equal to 90°.

Equation(2.1) holds only in the absence of Manning con-
densation because re-arrangement of condensed counterions
near a crossing site is likely to produce angle-dependent cor-
rections to Eq(2.1). In the presence of counter-ion conden-
sation, the functiorlJ(y,R) should be qualitatively similar (b) ©
to Eq. (2.1, and in particular it should have a minimum at
y=m/2. Whenever an explicit form fdd (y,R) is required,
we will include the effects of the counterions in the usual
way by replacing in the DH formula the bare charge per unit®

length with the Manning-renormalized charge per unit length . . .
e/IS. This gives a valge fol’ of the ordergof plle soT 9 per unit length [ is a molecular length The formation free

increases with decreasing salt concentration. energyAFl(y) of a single-ion bridge 1S the sum of these two
terms minus the energy cost of bringing the two rods to-

gether, as given by Ed2.1),

Disin (y/2)

FIG. 2. lon links between two charged rodqa) Single-ion salt
bridge. The optimal angle is 90°.(b) Two-ion salt bridge. The
ptimal angle is less than 90°.

C. Salt bridges
o

A crossing site between two rods with a minimum spac- AF1(y)=AHg+kgT In(—) —kBT.L. (2.2a
ing R of orderD is anelectrostatic trapfor condensed poly- L |sinyl

valent ions(see Fig. 2. The entropic free-energy cost of

localizing one polyvalent ion at a crossing site salZ ismes 2. Double-ion salt bridge

smaller than the entropic free-energy cost of localizing an e gjectrostatic energy of a two-ion bridge is minimized
equivalent number of monovalent salt ions, so we will ignore,pen the two ions are arranged symmetrically on opposite
accumulation of monovalent ions at crossing sites. sides of the crossing point along the direction of the two
acute angles of the cro$see Fig. 2o)]. The formation free
energy is, approximately, twicAHg+kgT In(¢dg/¢pL) mi-

For a crossing site with just a single localized polyvalentnus the sum of the energy cost of bringing the two rods
ion, the electrostatic energy is minimized when the polyvatogether and of bringing the two ions together. This latter
lent (point) ion is localized right at the geometrical center of term is angle-dependent and proportional to gi2) as fol-
the crossing poinfsee Fig. 2a)]. Denote the two rods by 1 lows from Fig. 2b. For explicit calculations, the formation
and 2. The electrostatic free energy gain of placing a polyfree energyAF,(y) of a two-ion salt bridge withy acute
valent ion at a crossing sifghat initially carried no polyva-  will be taken to be
lent ion) will be denoted byAH(y), with y the crossing
angle. AHg(vy) is of orderZkgT, keeping in mind that the Yl Sy 1
effective charge per unit length of the rods equells,. For ~ AF2(¥)=2AH+2kgT '”(K) —-A S'”(E) _kBTW
explicit calculations, we will assume thAH, is a constant. (2.2b
The entropic free energy of localizing a polyvalent i@on-
fined to a rod to one particular site is of the order to with A a dimensionless parameter of order one. The forma-
kgT In(lg/ L) sincey/ ¢L is the number of polyvalent ions tion free energy for obtuse is found from the condition

1. Single-ion salt bridge
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AF,(7m—y)=AF,(vy). The one important feature of Eq. V()
(2.2b is that, unlikeAF (), the minimum ofAF,(y) is no
longer at 90° because of thesin (/2) term.

Ill. GENERALIZED ONSAGER THEORY
A. Variational free energy
Let f,(2) be the normalized orientational distribution

function, with f (Q)=f,(—Q). Onsager's free energy
functional forf,({2) has the following general form:

BF[f,(Q)]/¢=In ¢VT+J dQ f,(Q)In[47f,(Q)]

+ [ [ a0u00.f @00V,
(3.1

The first term is the translational entropic free energy where
vt is the thermal volume and is the rod concentration. The =
second term is the orientational entropic free energy and the
third term is the correlation energy computed within second- Y /2
order virial theory. The kernéV(y) in Eq. (3.1) takes the 1l
form

V('}’):¢L2|Sin'y|[ D—dePAF( 4 1

I r
'”(—|siny| +C+E1(—|sm|)ﬂ- 32

The first two terms in Eq.3.2) are, respectively, the standard 4T
Onsager excluded volume term, and the short-range interac-
tion due to sliding linker molecules. The length scale
(<D) is the effective range of the salt-bridge interaction.
The formation free energF () of the ion link should be
equated to eitheAF,(y) or AF,(vy), depending on whether
one or two ions is involved. It is assumed that the salt-bridge
can freely slide over the rods. The last term, derived by 21
Stroobantset al. [6], is the contribution from the BP long-
range electrostatic repulsigeee Eq(2.1)], Cis the Euler
constant ande(x) is the exponential integral. We will de-
fine the control paramete®“Fo to be the angle-independent
part of the Boltzmann factor of th&single-ion salt-bridge
energy,

X

-1
eBAFo— %GBAHG'. (3.3 ’ R

Since e#2Fo is proportional to the ion-to-rod concentration T /2
ratio (/¢), we will considere®2Fo as an experimentally ac-
cessible control parameter.

The structure of the functio¥(y) as a function og?#2Fo
will play an important role in the following. Figure 3 shows
the typical form ofV(y) for a single-ion salt bridg¢using
Eq. (2.28 for AF(y)]. For low values ofe”*"0, V(y) has a FIG. 3. Typical form of the functioV(y) given by Eq.(3.2) for
primary minimum aty=0. ForxD small andl" of order one,  the case of a single-ion salt bridge. The function is shown for two
a secondary minimum appears @t 7/2. The secondary values ofefo near the point where the minimum shifts from
minimum is more pronounced for largé&rbut it never be- =0 to y=mu/2.
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comes the primary minimum &#2Fo=0 (i.e., if there are no

salt bridges For nonzeroe®*Fo, the secondary minimum ny

deepens, and turns into the primary minimum\gfy) at a :*

critical value ofefAFo of orderD/d. !
To obtain a better insight into the implications of this shift "

in the position of the absolute minimum &f(y), assume (&)
that the correlation energy is the dominant term of €ql).

The problem is then to determine what orientational distri-
bution minimizes the correlation energy under the condition

thatf ,((2) is normalized over the unit sphere. If the absolute

minimum of V() is at y=0, then the correlation energy is

minimized by a functiorf ,({2) that is highly peaked along a )< #
particular direction. This corresponds to the nematic phase.

The alignment is due to the excluded volume effect. Next, N/ \
suppose thaV(y) is of the form shown in Fig. 3 with the (b)
absolute minimum ay= m/2. The correlation energy then is
minimized by a functionf ,({2) that has equal-sized peaks
along three orthogonal directions, i.e., by a functigy(2)

with cubic symmetry, which corresponds to the Nelson-
Toner cubatic phase. This argument would lead us to expec!
a first-order phase transition from a nematic phase to a cu-
batic phase as a function of the control parameféfo. The
scenario is not very sensitive to the detailed shap¥(of):

it only requires that a second minimum W{(y) develops at

y=l2 as a function of the control parameti o, A e B
For the case of awo-ionsalt bridge, the second minimum ng| 27

of V(y) appears at some anglg less thann/2 [see Eq. _

(2.2b]. Obtaining the orientational distributidin,(€2) mini- n, -

mizing the correlation free energy is a less trivial mathemati- ©

cal problem in thls_case If the Second_ r_nlnlmum\,dfy) at FIG. 4. Mesophases are formed by aligning rods along preferred
77(_ has just turned into the absolute minimum\dfy), then  girections that make a relative angle equal to the optimal aptyle
minimizing the correlation energy leads tdtﬁ(ﬂ) that con-  |n two dimensions, there are in general two preferred directions and
sists of a number of preferred directions on the unit spherg, three dimensions there are in general three preferred directions
such that the angle subtended between pairs of directions fg) and(c)]. For certain special angles, there can be more preferred
equal toy* or to m—y*. There are a number of different directions such ag* =60° in two dimensiongb).
ways how this can be arranged.
tions. It is, however, not a nematic liquid crystal since the
1. Planar structures phase lacks uniaxial rotational invariance around the optical

The simplest case is when the rod orientations are re"flxIS In the most general case, the point-group symmetry of

stricted to aplane[see Fig. 4a)]. For arbitraryy*, an obvi- this phase is that of the Bravais lattice of the trigonal crystal
ous choice forf ,(Q) Woula coﬁsist of two preférred direc- 2 W€ might call it a "trigatic” phase. The trigatic phase can
tions that makg a mutual anglg®. This corresponds to a be shown to have a lower correlation free energy than the
two-dimensional nematic liquid crystal. The optical axis is planar nematic phase. Adding pealesg., by forming a tri-

the bisector of the two peak directions. If planar structures angular lattice of peaks on the unit sphemecreases the

correlation free energy and is in general not favorable. How-
also would be favorable in three dimensions, then formatiory 9y 9
ever, as for the two-dimensional case, for certain special val-

of a smectieC phase may be possible. A special case 'S es of y*, the correlation energy can be further reduced b
obtained when/ is equal to 60° since then there are not two 9y y
adding more peaks. For instance, for gds=3 the optimal

butthreeplanar directions with all subtended angles equal to
o distribution has six peaks dlrected along the edges of a tet-
60° (along the edges of an equilateral triangféhis corre- rahedron while for cos* =1, the orientational distribution

sponds to dnon-birefringenthexatic liquid crystalsee Fig. has four peaks directed along the four-body diagonals of the
4(b)]. cube. Neither of these two interestin
. g phases are, however,

birefringent.

The preceding discussion applies only if the minimum at

The simplest distribution that obeys the required condi-y* has just turned negative. If the minimum deepens then a
tion in three dimensions is afy,({2) that consists of three variety of other complex structures may become possible, for
peaks along three directiord$; on the unit sphere making instance those associated with the directions along the edges
mutual angles equa¥*. This phase is in general birefringent of a regular polyhedral network covering a sphére., the
with the optical axis along the vector sum of the three direcplatonic solid$ or triangular lattices on the unit sphere. For

2. Three-dimensional structures
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simplicity, we will consider below only the case that the Inserting Eq(3.7) into Eq.(3.1), and minimizing the free
second minimum ofV(y) is at y*=/2, i.e., the cubatic energy with respect ta, we find that the variational free

case shown in Fig.(4). energy of the nematic is in fact not significantly affected by
the presence of linkers. FafL2D large compared to one, it
B. Phase diagram is

To construct the full phase diagram, we must minimize
the complete free-energy equatitl) keeping account not

?er;% of the correlation free energy but also of the entroplcwi,[h d,_, positive and dimensionless and wiih, a renor-

malized rod diameteb [defined similar to Eq(3.5b)]. The
contribution coming from the linkers is largely suppressed
_ T o by the factore /s sincey is small for largee. Because
The isotropic distribution function i$,(Q)=1/4w. The  the second-virial term of the free energy of the®tropic

BFo(#)=¢In(¢vr)+di¢In(daL?Dy) (3.8

1. Isotropic phase

associated variational free energy is phase is lowered by the introduction of the links—by an
B 1,22 amount proportional to the control parame¢éfFo—it fol-
BFiso ¢)= ¢ Indvr+3 ¢"L"DoGo, (34 lows that the isotropic-to-nematic transition point is shifted
with to higher values ofpL?D when efFo increases. If we in-

crease”*Fo to the point wherg,=0, then, for largepL?D,
T w _ the nematic phase has a higher free energy than the isotropic
9025—(d/Do)eBAF°f dysir? ye IS"01 (358 phase, as can be seen by comparing E3jd) and(3.9). The
0 critical value of ¢L?D for the isotropic/nematic transition

2\ (m point in fact diverges afj,=0,
DO=D+K1(—)J dysir? y
7 Jo —2Ingg
(SLD)ir| —5— |- 3.9

In| ——

X .
|siny|

. (3.5b

C+E —F
TR |siny]

This quantityg, is a dimensionless parameter that does not g yhe cybatic phase we will use as our trial distribution
depend on the rod concentration or on the rod ledgénd ¢, tion not one but three normalized “Onsager-type” an-

that can be considered as a second-order virial coefficieny,, oy gistributions along the three preferred orthogonal direc-

while Dy is a renormalized rod diameter. _ tions f; (thex, y, andz directions of a Cartesian coordinate
For increasing values &%, g, tums negative at some g qion)

critical value. The required linker concentration in order for

0o to be zero is proportional t@ and independent of. 1(3

Negative values ofj, in Eq. (3.4) are associated with nega- f= _[2 fol 6 ,Q)J _ (3.10
tive second-order virial coefficients and hence wjthase 3|2

separation A necessary, although not sufficient, condition of

phase stability of an isotropic solution is that the secondlhe 3 prefactor is required to maintain normalization. The
derivative of the free energy with respect to the concentraangled; is measured from the unit vectdy, while « is to be
tion ¢ is positive. If that condition is violated, spontaneoustreated again as a variational parameter. Inserting(E640
phase separation is expected to take place. It follows fronnto Eq.(3.1) and minimizing the free energy with respect to
Eq. (3.4) that spontaneous phase separation happens for rad gives the following result:

concentrationsp in excess of

3. Cubatic phase

1 BFc($)=3BFo(¢/3)+ $°L°Dgy , (3.1
= 3.6
i L“Do(—go) 36 where
2. Nematic phase 95 =35 {1+[UDx)][INT+C+Ey(I')]~(d/D)ef o1}
The Onsager trial distribution function for a nematic is of (3.12

the form . . . .
The first term on the right-hand side of E.11) is the

fo( 0, @)= constx cosi a cosé). (3.7 Onsager free energy of a collection of three nematic phases,
each having a concentratiof¥3, along the three preferred
The parameter 3/ is proportional to the second moment directions. The second term is the interaction energy between
(#%) of the angular distribution, and acts as a variationalrods having different preferred directions. This second term
parameter. For conventional Onsager theory, this trial funcis of the form of a second-virial term, as in E®.4) so we
tion leads to an isotropic-to-nematic transition #k?D of  can identify the linegs =0 as a line in the phase-diagram
order 4.0. At the critical pointy is large compared to one. bordering where the phase-decomposition of the cubatic
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phase. Comparing Eq¢$3.5 and (3.12 we find that, as a afFo
function of increasing®“Fo, the lineg} =0 is encountered ‘
before we reacly,=0.

For efAFo=0, the variational free energy of the nematic
phase is lower than that of the cubatic phase. For increasing
ef4Fo, the cubatic free energy drops with respect to the nem-
atic free energy becausg decreases witle#*Fo [see Eq. S I _\ _____________
(3.12] while the nematic energy is not affected &/ "o (to
lowest orde). As long asgg remains positive, the cubatic
free energy exceeds the nematic free energy in the limit of g0 """
large values ofgpL?D [see Eqs(3.8) and(3.11)]. At the
point g5 =0, the variational free energy of the cubatic
Fc(¢) equals Fy(¢/3), according to Eq(3.11). Because Isotropic
the Onsager variational free energy ic@nvexfunction of
the concentratiowp for larger values ofsL2D [see Eq(3.9)]
it follows that 3F(¢/3) is less tharF(¢). This means
that along the lingg =0, the cubatic must have a lower free 9L2D
energy than the2 nematic for large valuesfdf’D. The criti-
cal value of "D for the cubatic-to-nematic tragsmon di- s the control parametez®*Fo. The horizontal axis is the dimen-
vergeg when we approach ﬂ%:o line (a§ 190)'_ For sionless rod concentration. The dashed lines indicate where the
negative values ofjg , we encounter a spinodal line for secong-virial coefficients of the isotropic phase, respectively, the
spontaneous phase separation of the same form a@Bl.  cubatic phase changes sigoE0, respectively,gi=0). The
A schematic phase diagram is shown in Fig. 5. hatched region is the boundary for phase separation.

Cubatic

Tetratic

Nematic

FIG. 5. Mean-field phase diagrafechematit. The vertical axis

drical symmetry we may restritlandmto even value$26].
Expanding the free energy in terms of thg, coefficients,

To obtain a better insight into the competition betweenusing the completeness property of Legendre polynomials
nematic and cubatic order near this multicritical point, weand the addition theorem for spherical harmonics, gives to
will expandf ,(€2) in a series of spherical harmorjiz5] and  second order in thé, ., coefficients,
treat the expansion coefficients as order parameters for the

various transitions. We thus start with BF=BFo(d)+2md % (1+¢L2D|g|)|A|,m|2+O(A3)].

1 3
=+ 3 3 A0, (313 319
o=l m=-l In Eq. (3.14), theg, are dimensionless parameters similar to
the second-virial parameters encountered in Sec. 1l B, while
Since the angular distribution function must be real, we dethe D; parameters are renormalized rod radii. More

mand thatA, .= (A, _)* while for achiral rods with cylin-  precisely,

C. Order-parameter theory

9= foﬂde P,(cos#)sir? 8(1— (d/D,)ePAF), (3.153

sing
[5d@ P (cosh)sir? @

[5d@ P, (cosh)sir? 6] In +C+E;

sin 0)

Di=D+«? (3.15h

The higher-order terms in E¢3.14) all are due to the non- allowing spontaneous development of a mode of the distri-
linear dependence of the firgntropio term of Eq.(3.1) on  bution function with the symmetry of a spherical harmonic
f,(Q). It follows that the coefficients of the higher-order with indices(l, m). The lines in the phase diagram defined by
terms in Eq.(3.14 are numerical factors that do not depend 1

on physical quantities. The dependence of the free energy on D=
the material parametetts D, and ¢ thus proceeds entirely L*Di(=9))
through theg, parameters. The isotropic phase is unstable ifthus determine a set of spinodal lines. For instance(E6)
1+ ¢L2D,g, is negative for any because in that case we can is a special case of E¢3.16) for | =0 (spontaneous growth
reduce the free energy below that of the isotropic phase bgf concentration fluctuationsSimilarly, thel =2 case is the

(3.1
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instability line for spontaneous development of nematic orHere, r,=1+ ¢L?D,g, measures the distance from the

der with Aypx [dQ) f¢,(Q)Yg(Q), the usual nematic order =4 instability line given by Eq(3.16. Numerical minimi-
parameter. Thé=4 case will be seen to correspond to the zation with respect to the expansion parameters shows that
development of cubatic order. To obtain the actual phas#he A, coefficients are zero within the numerical precision
diagram near the multicritical point, we must include theof the minimization.

nonlinear terms of Eq.3.14). We will do this in a number of A “polar coordinate” representation simplifies this free
steps. energy considerably. We define
1. Nematic order Acosp="~A4,
If we only allow terms qfl =2 symmetry, then the free Asing=v2A,,. (3.19
energy assumes the following form: ’
BF 4 In terms of the pola’A-¢ variables, we can write the free
P2 2 21 energy as
2rd rol|Azd“+2|Az "] 57 (Vo) ay
BFa(A, @)
307 P ATy 2 4
X[(A2,0)3_6A2‘0|A22|]2+Z 27T¢ r4A +F((,D)A3+G((,D)A . (32@
In Eqg. (3.20
X{(Ag0*+4|A % +4|A J%(A207%) |,
Flo)= -7 36 3, 12 .
(3.17 (¢)=—=9Vm| 7507(COSP) "+ 773C0Se(Sine)
where we included terms up to fourth order in the expansion (3.2
coefficients. The parametes=1+ ¢L2D,g, measures the and
distance from thé=2 spontaneous instability line as given
by Eqg.(3.16. When we decreass, two nontrivival degen- 1058 A 36 ) )
erate minima appear. At a first-order nematic-to-isotropic G(¢)=27m| 77757=(C0S@)"+ 6 57o=(COSp)“(cOSp)
phase transition poirihearr,=0.031), these two nontrivial
minima turn into the absolute minima. The first minimum 3y 980
has a nonzero value d&,, (about 0.086 at the transition *3 —21879(Sln(p) (3.22

point) while A, ,=0. We may make the standard identifica-
tion of A, ; as the nematic order parameter. For the secondre two dimensionless functions of the polar angle F(¢)
minimum, bothA, ; andA, , are nonzero but this is actually and G(¢) both have a single minimum at the “magical”

not a separate case since the two orientational distributiongngb@* :arctan\/g The physical meaning of this angle is
turn out to be related by a 90° rotation. : T . o
obtained by plotting the corresponding angular distribution
2. Cubatic order function,
If we only allow terms ofl =4 symmetry, then the free 1 0 .
energy assumes a more complex form, fy(Q)= EJFA{(COS‘P)YAI(&’@H(S'”@)
BF4 X[Y3(6,0= @0)+ Y4 (6, 0= o) /V2]}

2rg A+ 2A AP+ 21As 2 = 9 (3.23

X

E(Azl 03— 1—2A4 dAs %+ ﬁA4 o Ag4? (with ¢4 an arbitrary phase factprThis distribution function
1001 ™ 191 ™ ™ 143 %5 % is shown in Fig. 6(first pane] and it corresponds to the
12 \/4\5 . Nelson-Toner cubatic phase.
13\ glAedAsl” +ecl To minimize the free energy we first set=¢* in Eq.
(3.20. The remaining dependence[@F ,(A,¢*)/27¢] on

1058 362 . .
EahhndyV: _TTT a2 2 the amplitudeA is a standard Landau order-parameter expan-
1701740 1257 grefadAsd ’ : ’

+ 27T

X
sion of the free energy near a first-order phase transition. We
3734, ) 00 4 conclude that Eq(3.20 describes a first-order phase transi-
+6 Teg e adAd 6 earedAdd tion fror? an isotropic to a cubatic phase withas the order
980 410 parameter.
+6 | A+ 12— A, )% AL A2
21 879| 4d 21 879| 41 3. Cubatic-nematic coupling and the tetratic phase
80 \/ﬂ W llow all t t tic order béth 1=2
112 A (A*)2+cclt e now allow all terms up to quartic order :
17017 V g5 AadAa-a(As2) ] andl =4 symmetry, but we exclude th%&, , andA, , coeffi-

(3.18 cients that we found to be zero when minimizing the purely
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A4,0(A2,0)2. These terms guarantee that nonzero values of
A, pare associated with nonzero valueshgfy. This is, how-
ever, a well-known effect: the actual nematic orientational
distribution function is not really &3 spherical harmoni¢a
complete series of the spherical harmoni€¢) for all even

| is required[27]).

The cubatic-nematic coupling term has important conse-
gquences. Consider the limiting case>0. Far from the nem-
atic instability line,A, o must in general be small, so we need
only to retain linear or quadratic terms A o in Egs.(3.17)
and (3.24). We can write the dependence of the free energy
on A, in that limit as

BFconAzg) 40
Prianed o o\ g o

360 A
1001 49

X

14
Azzt,o_ 5 |A4,4JZ) Ay ot r2|A2,0|2-

(3.29

We can minimize Eq(3.25 with respect taA, o to obtain a
new contribution to the cubatic variational free energy that is
quartic in the cubatic order parameter,

BFcop(Ar(P) _
2w

r

7 2
- E((CO&P)Z— g(Sinsﬂ)z) A%,

(3.26

with T" a positive numerical constant. This nematic-cubatic
coupling term can be absorbed into the cubatic free energy
by a redefinition of the functio®G(¢) [see Eq(3.22)],

* r 2 ’ H 2 ?
G (<p)=G(<p)—E (cose) —g(slmp) . (3.27)

The second term oB* (¢) in Eq. (3.27) has amaximum

FIG. 6. Orientational distribution functions of the cubatic phaseat the magical angle* =arctan\/§. For large values of,,

(top panel and the tetratic phaggottom panel

=2 and |=4 parts of the free energy. The following

cubatic-nematic coupling term is then encountered to firs

order in the nematic order paramefey o:

BFoia  BF, BF, 40
omd ~ 2 2wy T Peo\B) TNmgg tam

360 A
1001 49

+ (higher-order termys

14
X[ (Ag0)?— 5 |Asd?

(3.29

It follows from Eq.(3.24) that nonzero values of the nematic
order parameter araot automatically produced whenever
A,o appears. The termA, d (As0°— % |A44?%] vanishes

when A, 4/A40=\ 13, i-€., precisely at the magical angle

o* =arctan\/§ remains the overall minimum @&* (), but

as we reduce, the minimum turns into a maximum a criti-
cal value ofr, of the order one, as is evident from E§.27).

The free energy acquires a new minimum wiphdifferent
from ¢*. As we continue to reduce, the minimum shifts
continuously away fromp*. To interpret the nature of this
transition, first note that whee# does not equap*, then the
nematic order parametex,, must be finite. That does not
mean, however, that the new phase is just a nematic, only
that it is birefringent. This is because the new optimal angle
¢* is in general not equal to zero at which means that the
expansion co-efficierd, , remains nonzergsee Eq(3.19].
This, in turn, impliesthat the new phase does not have
uniaxial symmetry A plot of the orientational distribution
function is shown in the second panel of Fig. 6: the new
phase is a cubatic with a tetragonal distortion along one of
the axes. We will call this birefringent phase—with com-

that defines the cubatic phase so cubatic order does not inkined nonzero nematic and cubatic order parameters—a

pose nematic order.
Higher order coupling terms iA, o that play a role, but
that are not exhibited in EQq(3.24), are of the form

“ tetratic’ phase since it represents a tetragonal distortion of
the cubatic phase. Unlike the cubatic phase, the tetratic phase
is birefringent. Figure 7 shows the structure of the phase
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with r a linear combination of th& parameters. The second
term of Eq.(3.30) must be zero if there is no cubatic order
so, to lowest order, it must be proportional to the cubatic
order parameteA
()\xxxx_)\xxyy_ 2}\xyxy):aA- (3.31

From the previous discussion, we know that the preferen-
tial direction of the optical axis should be along one of the
cubatic directions. This conditions demands that the coeffi-
cienta in Eg. (3.3) is negative. The free energy is then
minimized if the optical axis of the tetratic phase lies along
one of the cubatic axes. Choosing the optical axis along any
of the three cubatic axes, we recover the same fornk (&)
but with the expansion parametereplaced byr +aA. The

FIG. 7. Mean-field phase diagram near the multicritical point asOnset of birefringence in a cubatic thus should remain a first-

computed by the numerical minimization of E§.24).

diagram as obtained by numerical minimization of Eg.

order transition but the larger the cubatic order parami&ter
the earlier birefringence starts when we reduceonsistent
with Fig. 7.

(3.24). Note that there is never a direct transition from the

cubatic to the nematic and that the four phases appear to

come together at a multicritical point. A significant part of
the cubatic phase is transformed to a tetratic phase.

It is useful to briefly discuss the nature of the cubatic-to-

tetratic transition in a different manner. The proper orde
parameter describing the appearance of nematic birefri
gence in an isotropic fluid is not realkx, o but ratherQ;; ,
the anisotropic, traceless part of the dielectric tensor. In
nematic, this tensor has the form

with Sthe amplitude of the nematic order parameter and wit
n; a unit vector along the direction of the optical axis. Be-
cause of rotational symmetry, the Landau free energy of th

nematic-to-isotropic transition cannot depend on the directo

orientation and has the forf(S)=(1/2)rS?°—wS*+uS' to
fourth order inS, with r, w, and u expansion coefficients
(there can be no linear ternSsinceQ)j; is traceless Reduc-
ing the coefficientr, we encounter the expected first-order
phase isotropic-nematic phase transition.

For the onset of birefringence in @batic environment,

we must allow for terms that are dependent on the directo

orientation. Cubic symmetry permits the following second-
order terms:

F2 = % )\xxxx Q>2<x+ Q§y+ ng) + )\xxyy( Qxeyy+ Qxezz
+Qyy Q20 + 2Ny Q%+ Q5+ Q7). (3.29

The three\ parameters are coefficients of a tensor of ran
four with cubic symmetry. In terms of the amplitu&eand
the director, this expression simplifies to

F2=3 rS?+ 3 (Moo Mxxyy— 2hxyxy) SH(NY+ Ny +13)

(3.30

XXYYy

r e )
rphase separation is well establishe8] for the case that

h

IV. PHASE COEXISTENCE

The exotic liquid-crystal phases appear along the border
of a region of phase decomposition. The fact that network
formation by cross-linked polymers can be accompanied by

angle-dependent forces play no role. Two physical consider-
tions play here an important role. First, when a certain con-
centration of(strong linkers is added to a solution of poly-
mers, then extended networks appear for increasing linker
concentration when we cross tpercolation thresholdsee
Fig. 1). For rigid rods, the linker concentration at the perco-
lation threshold is proportional to the rod concentratipn
with a proportionality constant close to two. We can view the
control parametee®* "o of Sec. Ill as the probability for the
(faormation of a link on a rod, so the percolation criterion for
Petwork formation is similar to the condition thaf*Fo
must exceed a critical value for the formation of a dilute
aggregate.

Next, assume that the initial linker-free rod concentration
is high enough so the starting solution is at lesesnidilute
This means that there are a certain number of “preexisting”
contacts between the rods. L&tp) be the correlation length
of the semidilute solutiopé(¢) is proportional to (1) 12 as
discussed belojv The concentration of these contacts is then
proportional to 1(£(¢))3. If the linker concentration igess
than the concentration of native contacts, then all linkers can
be accommodated by the semidilute solution with no change
in local structure. When the linker concentration exceeds the
concentration of preexisting contacts then this forces a de-
crease of the correlation length to a value below the one of
the semidilute solution. This results in a significant reduction

kof the entropy of the semidilute solution. This free energy

increase can be avoided by absorbing the excess linkers into
dense clustersontaining only a limited number of rods and
many linkers, a form of phase separation known as “mi-
crogelation.” Note that these dense clusters are compacted
by entropy: releasing rods from the clusters into the solution
increases the entropy of the system.
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We now will examine the nature of the phase-separatiorall the rods, i.e., tha¥,¢,<V ¢, we can expand Ed4.2) in
in more detail for the present case where the rods are charggdwers of the ratio/,¢,/V ¢ with the following result:
and where polyvalent ions act as cross-linkers.

D3
AFQ/kgT=V¢pQ In +M =5 In(P/Q
A. Isotropic-cubatic phase coexistencéy/ p<rL) B ¢ In($vr) fblz( ( ¢)
First consider a state where a linker-rich network coexists L
with a linker-poor isotropic rod solution restricting ourselves +cqIn(c,® L/D)+c3|— KO(KD/<I>1’2)).
for simplicity to the case that the network phase is a cubatic B
aggregate and thanearly) all the linker ions,M in number, (4.4

are absorbed by the cubic network. Let the characteristic o _ _

mesh size of the aggregate Bethe aggregate rod volume We will minimize the_ free energy with respectdqur fixed
fraction ®, and the aggregate volumé, (assumed small M under the constraints of Eqel.1) and(4.3). The first two
compared to the total sample volutg. The rod concentra- (€rms inside the large parentheses favor labgdhis is just

tion ¢, of the aggregate is then equal ®Q with Q, of the entropic-compaction mechanism: by increasinge can
order LD?, the rod volume. The aggregate volume fraction'elease rods and hence reduce the overall free energy of the
® is related to the mesh size the linker numbeM, and to ~ Mixture. The last term in large parentheses is negligible as

V, by simple geometrical relations long as the mesh sizé is large compared to the Debye
a ' length 1k. On the other hand, because the rod lengtis
Ve MES, (4.19  large compared to the Bjerrum lendththis term makes the

free-energy cost of any network withmuch less than the
2 Debye length prohibitively large. We thus expect that com-
E) . (4.1b paction continues until the mesh size becomes comparable to
the Debye screening lengifat least forkD<1). Explicit

To treat the phase separation, we must generalize the Ofinimization of Eq.(4.4) gives

()4

sager variational free energy of Sec. Illl. A mechanism is D \2
required that restrains the uncontrolled growth of the rod *%(K_) _ (4.5)
concentration when we cross the boundary of the dense In(L/lg)

and/or dilute phase coexistence region. This physical mecha- ) _ o )
nism is, for low salt concentrations, electrostatic repulsion”Comparing with Eq(4.1b it is easy to show that this result
between the rods. The variational free energy for a sampli§ consistent with our intuition that¢ is of order one.

exhibiting isotropic and/or cubatic phase coexistence in the As We increase the linker concentratign the aggregate
presence of electrostatic repulsion is volume grows further by incorporating more and more rods

and eventually we exhaust the uniform solution. This hap-

pens whenV,¢,/V¢ is of order one. Using this criterion
daln(davr) together with Eqs(4.1) and(4.5), we find that the maximum

linker to the rod concentration/¢ for which coexistence

L between an isotropic phase and a cubatic phase remains pos-
+Cl¢a|n(cz¢aL2D)+Ca|— ¢aKo(K§)]- sible is of orderxL. This is just the condition for the mean

B spacing between the links of a network containafy the
(4.2 rods to be equal to the Debye screening length.

AF/VKgT= ¢psIn(psvr) +(Va/V)

The first term is the entropic free energy of the isotropic
solution. The rod concentration of the isotropic solutiogis
(we neglect the second-order virial terms for the isotropic We saw that when//¢ is large compared taL, phase
solutiong. Conservation of the number of rods requires thatcoexistence between a cubatic network and an isotropic so-

lution no longer is possible. A new form of phase decompo-

Vst Vah=Vo. 4.3 sition is required with one of the two phases accommodating

a higher density of linkers than the cubatic phase is capable
The second term of Ed4.2) is the free energy of the aggre- of. Such a phase exists: the dense bundle discussed in the
gate. The first two terms inside the brackets are the transldntroduction. In its simplest form, a dense bundle is charge
tional and rotational entropic free energies of the cubatimeutral: polyvalent ions cancel the charges of the rods, al-
phase obtained abovVsee Egs(3.8) and(3.11); c; andc,  lowing the rods to be in close proximity. The essential point
are constanis The third term inside the curly brackets de- is thus that dense bundles can absorb far more polyvalent
scribes the electrostatic repulsion—computed within DHions than the network phase. These polyvalent ions are either
theory—between the rods of a cubatic structure of mesh sizeondensed into a Wigner crystal, or they may remain mobile
¢ Kg is the modified Bessel function ang} is a positive  forming a highly correlated liquid. Numerical simulations of
constant. Since the mesh size depends on the rod concentgzirs [29] or bundles[14] of polyelectrolyte rods indicate
tion ¢, through Eq.(4.1), Eq. (4.2) is indeed nonlinear. In that, at room temperature, divalent ions are still fairly
the limit that the aggregate contains only a small fraction ofmobile.

B. Dense bundle-cubatic phase coexistencéys/ ¢p> kLl )
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The preceding argument would suggest that the mogstic width of the charge cloud surrounding the dense bundle,
natural form of phase coexistence would be to afiethe  which is the Chapman lengthgo) 1=Ag/IgMZ.)
polyvalent ions to construct a charge-neutral dense bundle, The next step is to pladd polyvalent ions on the surface
with the remaining rods free to form a linker-free isotropic or of free rods in solution. This leads to an effective partial
nematic phase. As long as we are far from the isoelectridischarge of the rods and the releasd/@ monovalent ions.
point, the bundle needs to absorb only a small fraction of th&'he free-energy gain obtained by counterion release is,
total number rods to cancel the linker charge. This may notvithin PB theory[33]
be true, however. Suppose we remove a polyvalent ion from
the bundle and use it to create a link between two rods in
solution. The local electrostatic energy of the ion should not
be much affected by the transfer—the ion is sandwiches be-

tween two rods in either case—but this is not true for theper released ioffor the case of no added saltn Eq. (4.9),

entropy of the system. Transfer of a polyvalent ion of va- p js the rod diameter, b/is the line density of charges along
lenceZ out of the bundle should permit releaseounte-  the rod, andéy, is the Manning parametdi.e., &y =15/b;

rions out of the Manning clouds of the two rods. Studies ofgq. (4.8) is the limit case oféy<1]. The normalization
counterion release under different circumstan@® show  constant, is the same as in E@4.7). The discharge energy
that this process should lower the entropic free energy of thgf the rods is then
system by, approximatelkgT per released ion. This coun-
terion release mechanism is opposed by the free-energy cost AF 0= — M(Af o+ AH, 00 4.9
incurred by the electrical charging of the bundle due to the
removal of the polyvalent ioni31]. This argument would with AH .4 the contribution to the electrostatic free-energy
lead to the conclusion that denbandles may be spontane- gain due to interaction of the polyvalent ion with local
ously chargedThe excess ions are used as cross-linkers igharges of the rodwhich is also beyond PB theory
solution and may form a network. Finally, we constructM single-ion salt bridges between

To estimate the free-energy cost of transferring ions fronfree rods. The free energy per gain per bridge is taken to be
a bundle to the rods in solution, we will perform the transferAF,(y=n/2). The total free energy change of the charge
process in steps. First, we remolMepolyvalent ions of va-  transfer process is then
lenceZ from a very long, charge-neutral cylindrical bundle
of radiusR,. To compute thecapacitive charging free en- 3y
ergy AF .4, of the bundle, we first note that the remaining, AF(M)7kgT~MAH-MZ '”(W)
mobile polyvalent ions of the bundle must redistribute them-
selves until a state of equilibrium is reached in which there is
no net electrical field in the interior of the dense bundle. It
follows from Gauss’s law that in this equilibrium state the
interior must be charge neutral, so the total chatlyeof the  with
dense bundle must be distributed uniformly over sheface
of the cylinder. AH=AHpynge= AHog— AF(y==/2).  (4.1)

The average surface charge area density of the dense
bundle is thuss=—-MZ/A,, with A,, the surface area of The quantityAH represents the local free-energy cost of
the bundle. The Poisson-Boltzma(#®B) free energy per unit transforming a polyvalent ion inside a dense bundle into an
area of aflat charged surface with a fixed surface chargeion link in a rod network. If we accept the fact that the local

3V

2mcobD? “.8

Afo=kgT In(

2
Is(MZ/A,) ) .10

+
MZIn( 2,

densityo is given by[32] electrostatic environment of a polyvalent ion inside a bundle
g2 is similar to that of an ion link between two rods in solution,
_ BY thenAH should be modesdi.e., of orderkgT). Minimizing
7(o)=|o] kBTIn( 2c ) (4.6 AF(M) with respect toM gives the following equilibrium

number of cross-links:

in the limit of no added saltq, is a normalization constant A
that will later drop out Using Eq.(4.6), the charging free- M* ~ —B2_ g~ BAHI2Z. (4.12
energy cost of the bundle is estimated as ZDb

The surprise is that the number of released polyvalent ions is
) +MAHpyndie determined by theurface areaof the dense bundle.
We now can use Eq@4.12 to determine under which
(4.7 conditions the dense bundle releases a sufficient number of
polyvalent ions to transform the remaining free rods into a
with AH g the contribution to the capacitive charging en- network phaséof the type discussed in Sec).IThe number
ergy cost by thdocal electrostatic correlation energy of the of polyvalent ions in a fully charged neutral cylindrical
bundle. (Neglecting the curvature of the bundle should bebundle of length, is oforderLbRﬁl(ZDZb), sincezD?b is
permitted providedR, is large compared with the character- the volume per polyvalent ion. The fractighof all polyva-

lg(MZ/Ap)?

AF g fM)=MZksT In( 5,
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lent ions that is transferred back into solution out of theV(y) turns negative. However, as the minimum deepens the
dense bundle is then the ratio BF* and LbRﬁl(ZDzb), details ofV(y) certainly will start to play a larger role. In
particular, two ion-linked biopolymers are not likely to as-
sume the 90° orientation of the single-ion link of our simple
model. In a recent DH calculation of the functidih(y,R)

for two crossing DNA strands, Kornyshev and LeiKiB6]

with Ay, of orderL,R,,. The concentration of released linkers obtained a complex structure for(y,R) with smalloptimal

in solution is &y since ¢ was the original concentration of crossing angles* of order (PD)Y?/L (P is the helical pitch
linkers. By assumption, the dense bundle contains only af DNA). It is in fact possible to study* experimentally by
small fraction of all rods, so the linker-to-rod concentrationattaching two double-stranded DNA molecules together at a
ratio of the free rods in solution is of ordéy/¢. Recall that  single point by crosswise exchange of single straittol-

the crude(percolation criterion for network formation by liday junction”). Confusingly, in the absence of polyvalent
strong linkers is that the linker-to-rod concentration ratiosalt ions, a Holliday junction appears to have a large crossing
must be larger than a number of order one. We saw earliegingle near 90°, while in the presence of finite concentrations
that /¢ had to be of ordekL at the onset of bundle forma- of Mg?* ions, the angle reduces from 90° to about B87],

tion. It follows thatdxL must be larger than one in order for which actually would be in accord with the results of Sec.
network formation to be possible at the onset of bundle fordll. In any case, it is clear that an accurate determination of

D
S~ R_befﬁAHIZZ, (4_13)

mation. Using Eq(4.13, this condition translates to V() would be very useful to make further progress.
Next, we neglected thermal fluctuations. For the phase
DkL behavior of very long, stiff rods such as actin, this is prob-
@ BAH2Z . P AN -
Ry € =0(1). (4.14 ably not an important limitation but for biopolymers with

shorter persistence lengths, such as DNA, thermal fluctua-

Physically, this effect may be viewed as the electrochemitions are likely to become increasingly important. If the per-
cal competition for monovalent ions between the “thin” sistence length drops below the Debye screening length—
charged rods of diameteD—the polyelectrolytes in and hence the mesh size—then we should expect that

solution—and “thick” charged rods—the cylindrical dense thermal fluctuations could significantly alter the internal
bundle of diameteR,,. By allowing the bundle to charge up structure of the network phase. The effect of thermal fluctua-
through the removal of polyvalent ions, we can transfertions on the tetratic phase could be rather interesting. Strong
monovalent ions from the surface of the thin rods to thethermal fluctuations might, for instance, lead to phase fluc-
surface of the thick rod, which lowers their density andtuations that transform the tetratic phase into a nematic phase

hence increases their entropy. with an unusual structure factor. Finally, we did not include
chirality. DNA is, for instance, well known to exhibit a cho-
V. CONCLUSION lesteric phas¢38], with the rod direction perpendicular to

the chiral axis. If we would increase the chiral nature of the

The central result of this paper is that elementary statistiinteraction, then exotichiral mesophases may become pos-
cal mechanics arguments indicate that under generic condsible, for instance the analog of the tetratic phase with the
tions exotic mesophases will form if we mix charged rigid phase factokpg in Eqg. (3.31) now z dependenfe.qg., ¢(2)
rods with small polyvalent counterions. It is important to =2 (z/P)]. These phases would compete with the choles-
realize the limitations of the methods when discussing itgeric phase rather than with the nematic phase. The dense
predictions. The most serious limitation is the “Onsager” bundle phase also may acquire a chiral charddt@}.
restriction of the free-energy variational expression Bdl) This paper was motivated by the experiments of RE].
to second-order virial terms. For instance, when mixtures offo what extent can we now interpret these results? For 90°
hard rods and hard spheres are examined experimentallgrossing angles, we encountered only one birefringent net-
complex forms of microphase transitions are obseif\8  work phase: the tetratic phase. The structure factor of a tet-
that do not readily follow from Onsager theory. In such mix- ratic network phase of semiflexible polyelectrolytes can be
tures,smectitike structures are encountered, and smecticlikeshown to have separate maxima both along the directions
structures actually might be present in the actin experimentparallel and perpendicular to the optical axis at different po-
that were described in the Introductip®5s]. sitions, consistent with the measured structure factor. It thus

The next concern is that even within a second-order viriakeems indeed possible that the network phase of [Réf.
expansion, we do not have a very accurate form for imporeither is a tetratic liquid crystal or a tetragonal crystal but the
tant quantities such a&F, () andV(y). This would re- precise peak positions &(q) appear to be different from
quire numerical simulations of the counterion distributionthat expected of a tetratic phaf&)]. Under conditions of
near a cross-link taking into account the actual moleculaphase coexistence of network and isotropic material, the
environment of the biopolymers in question. Since the twocharacteristic mesh size of the network is predicted to be the
biopolymers are in close vicinity near a link, the molecularDebye screening length which is not inconsistent with the
structure of the polymers is expected to be important in deexperiments of Ref.16]. Finally, can the network be in elec-
terminingV(y). We argued in Sec. Il that the symmetry of trochemical equilibrium with dense bundles? The numerical
the exotic mesophases onsetshould not depend sensitively simulations[14] on semiflexible polyelectrolytes report that
on the precise structure ®(y), only on the angle* where the ratio ofD/R, is of order 102. If we use this estimate in
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Eq. (4.14) and assume thatH is of order ZKT or less, then bundle phase is effected by external elastic stress. Osmotic
electrochemical equilibrium is possible between a networlpressure should favor the bundle phase over the network
and a bundle phase whexl is of order 18 or larger. phase and hence alter the phase coexistence.
This condition appears to be satisfied by the experiment of
Ref.[16].
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